
JOURNAL OF APPROXIMATION THEORY 68, 1-24 (1992)

Integral Representation of Normalized Weak
Markov Systems*

FRIEDHELM SCHWENKER

University of Dusseldorf,
c.u.O. Vogt lnstitut fUr Hirnforschung,

UniversitiitsstrajJe 1, 4000 Dusseldorf, Germany

Communicated by Oved Shisha

Received October 30, 1989; revised September 18, 1990

A necessary and sufficient condition for the existence of an integral representation
of weak Markov systems is given. This theorem generalizes results of Zalik and
Zielke. The proof is based on the relative differentiation method of weak Markov
systems introduced by Zielke, and on new alternation and oscillation properties of
weak M+ systems, which may be of some independent interest. © 1992 Academic

Press, Inc.

TERMINOLOGY AND RESULTS

For a nonempty subset of the real line, A c IR, let us denote its convex
hull by K(A). Let Me IR with card M ~ n +2, CE M, and h : M --+ IR strictly
increasing with h(c)=c. Moreover, let J:= K(h(M)), and let WI' ... , W"E

C(J) be increasing functions with w;(c) = 0 for every j E {I, ... , n}.
Define, for x E M,

(I)
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and for tE J,
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vl(t)=rdwl(td
c

U2(t) =rdw2(t 2)
('

(11 )

(12)

Moreover, let F(M):= {f: M ---71R},f0, ...,fnEF(M), LldM):= {xEMk :
XI < ... <xd for kE N, and V i := lin{fo' ...,f;} for iE {O, ... , n}.

Provided that fo, ..., fn E F(M) are linearly independent and
det(/;(tj))o<:i,j<:n has a weakly constant sign for all (to, ..., tn)ELln+I(M),
fo, ·..,fn is called a weak Tchebycheff system on M; we say fo, ...,fn E F(M)
is a weak T+ system, if the sign is nonnegative. fo, ...,fn E F(M) is called a
weak Markov system (weak M + system) on M, if fo, ..., /.i is a weak
Tchebycheff system (weak T + system) for every j E {O, ..., n}.

If, in addition,fo == 1, a weak Markov systemfo, ...,fn (weak M+ system)
is called normalized.

A normalized weak ¥arkov system 1, fl' ...,fn E F(M) is called repre­
sentable, if there are functions 1, gl, ...,gnEF(M) defined by (I) with
lin{l, ..., gj} =lin{l, ...,/.i} for every jE {l, ..., n}.

DEFINITION. Let fEF(M). Points (Xl' ... , xdELlk(M) are called a
strong alternation of length k of f, if there exists r E { -1, 1}, such that

r(-l)k- i f(x i »O for i=l, ... ,k.

A strong alternation is called positively oriented, if and only if r = 1.

The following lemma is [10, Lemma 4.1 ]

LEMMA 1. Let fo, ...,fn E F(M) be linearly independent. Then the
following two statements are equivalent:

(a) fo, ...,fn is a weak Tchebycheff system;

(b) No fE V n has a strong alternation of length n +2.

Subsequently, we shall derive some new alternation and oscillation proper-



INTEGRAL REPRESENTAnON 3

ties of weak M + systems (Lemmas 2 and 4) and use them to obtain new
properties of representable weak Markov systems.

LEMMA 2. Let fo, ...,fn E F(M) be a weak Markov system. Then the
following statements are equivalent:

(a) fo' ...,fn is a weak M+ systems;

(b) fo ~°and for each function f = afn +g, g E Un-I, a # 0, with a
strong alternation of length n + 1 in M, the alternation is positively oriented,
if and only if a > O.

DEFINITION. Let k ~ 2. An f E F(M) has a strong oscillation of length k
if there exists (x I' ... , xd E iJk(M) and r E { -1, 1}, such that

r( -1 )k-l (f(x , ) - f(x ,_ d) > 0 for i = 2, ..., k.

The strong oscillation is called positively oriented, if and only if r = 1.

The following lemma was developed in [11,14]. In [12] an elementary
proof, without use of the GauBkernel approximation of weak Markov
systems by smooth Markov systems, was given.

LEMMA 3. Let 1, fl' ... ,fn E F(M) be a normalized weak Markov system.
Then no fE Un has a strong oscillation of length n + 2.

LEMMA 4. Let 1, fl' ..., fn E F( M) be a normalized weak M + system. If
the function fE Un with f =afn +g, gE Un-I' a # 0, has a strong oscillation
of length n + 1, then the oscillation is positively oriented, if and only if a> 0.

DEFINITION. A normalized weak Markov system 1, fl' ...,f" E F(M) is
called weakly nondegenerate, if for every a, bE M and for every
jE{O, ... ,n-l}

=> h+ II(a.b)n M E Ui - 1•

Our definition of weak nondegeneracy is different from the definition
introduced by Zalik in [9].

We will prove

THEOREM 1. Every representable weak Markov system 1, g I' ..., gn E

F(M) is weakly nondegenerate.

DEFINITION. A normalized weak Markov system 1, fl' ...,fn E F(M) has
Property (E), if the following conditions are satisfied:
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(E1) There exists a normalized weak M+ system 1, gl' ..., gnEF(M)
such that lin {l, ..., gJ = lin {l, ...,fj} for every j E {I, ..., n}.

(E2) For every point cEK(M) with dimUn![c,oo)nM=n+1,
there exists 1, u" ...,unEF(M) with uj-gjElin{l, ...,gj_d for every
j E {I, ..., n}, such that for any ordered subsequence (k(l»7~0 of {a, ..., n}
the functions Uk(O)' ... , uk(m) form a weak M+ system on [c, 00) n M.

(E3) For every point cEK(M) with dim UnJ(-oo.c]nM=n+ 1, there
exists 1, VI' ... , vnEF(M) with vj-gjElin{l, ..., gj-d for every jE {I, ..., n},
such that for any ordered subsequence (k(l»r~o of {O, ..., n} the
functions ( - 1)k(O) - 0 Vk(O)' ... , ( - 1)k(m) - m V k(m) form a weak M + system on
(-00, cJ nM.

In [9J Zalik introduced Property (E) for weak Markov systems, and he
gave an integral representation for weak normalized Markov systems with
the conditions of Property (E) and the following Condition (I) (see
Theorem 3 in [9J).

Condition (I), For every real number c, the weak Markov system is
linearly independent on at least one of the sets (c, 00) n M and
(-00, c) nM.

A representable weak Markov system does not fulfill Condition (I) in
general as the following example shows:

Let M = { -1, 0, 1} and let the functions fO,/',/2 E F(M) defined by
fi(t) = ti

, iE {a, 1, 2}.
Zielke has shown in [11 J that every nondegenerate normalized weak

Markov system is representable. A weak Markov system is called non­
degenerate, if for every C E M the functions are linearly independent on
both of the sets (c, 00) n M and (- 00, c) n M.
Our main result is

THEOREM 2. A normalized weak Markov system 1, f" ...,/n E F(M) is
representable, if and only if it has Property (E).

PROOFS OF THE RESULTS

Proof of Lemma 2. We proceed by induction over n.
(a) =;. (b): For n = °the statement is trivial.
n - 1 =;. n : Let (to, ..., t n ) E LI n + I (M) be a negatively oriented alternation

of length n + 1 off= rxfn +g, rx >°and g E Un _ I' An easy calculation shows

det (/0' oofn) = ~ f f(t j )( _l)n- j det (fo... 00 In-I):::; 0.
to·"tn rxj~O to .. ·tj_Itj+loo. tn
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Proceeding as in Lemma4.1(b)=> (a) Subcase2 in [10], we get

dim Un-ll{fO, ..,fn ) =n,

So there iSjoE {a, "', n} with

(
/0'" .OOln_l)det > 0.
to ... tit l' .. t10- 10+ n

Thus

5

in contradiction to the fact that 10' ".,fn is a weak M + system.
If 1l<0 and (to, "., tn)EAn+1(M) is positively oriented, then the

statement follows completely analogously.

(b) => (a): The case n = °is trivial.

n - 1 => n : By induction hypothesis 10' ".,fn _ 1 is a weak M + system.
Suppose there exists (xo, ..., x n)E An + 1(M) such that

det (/0 .. In ) < 0.
X O " 'Xn

Thus,

for every (to, "., tn)EAn+1(M).
Since dim Unl{xo, .."Xn) =n+ 1, there is exactly onefE Un with

j=o, ..., n.

Then we havef=rxfn+g,gEUn_1,rx>0, and

By the induction hypothesis

j=O,,,.,n,
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in contradiction to
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Q.E.D.

Proof of Lemma 4. Let 1, f" ...,fn be a normalized weak M + system.
If n = 1, then the statement is trivial.
n-1=>n:Let fEUn with f=lI.fn+g, gEUn_ l , 11.>0, and let

(to, ..., tn)EL1 n+ I(M) be a negatively oriented oscillation of length n+ 1,
I.e.,

j= 1, ..., n.

Proceeding as in the proof of Lemma 4.1(b) => (a) Subcase 2 in [10], we
may assume that the restriction of Un _ I to {to, ..., tn} eM is a vector
space of dimension n.

Case 1. dimUn - II {lo •...• ln_ll=n.
For each e> 0 there is a function h t E Un _ I such that

j=O, ... , n-1.

Now fix an e with O<e<!max{lf(tj )-f(tj _dllj=l, ...,n}. By the
induction hypothesis it follows that ht(tnr~ht(tn- d. Taking into
consideration that

f(tn) - hAtn) ~f(tn) - f(tn-l) + e < 0

and (f-h t )(tj )=e(_1)n-l- j for each jE{O, ...,n-l}, we see that
(f - ht) E Un has a negatively oriented strong alternation of length n + 1 in
(to, ..., tn) E L1 n+ ,(M), in contradiction to Lemma 2.

Case 2. dim Un-I!{IO ..... ln_tl =n-1.
We distinguish the following two subcases:

Subcase 2a. dim Un - II {II ..... In} = n.
For every e>O there is htEUn_ 1 with

j= 1, ..., n.

Now, let us fix e > 0 sufficiently small. By the induction hypothesis we have
(-It-Iht(to)~(-1)n-lhAt,), and

(_1)n (f-htHto)= (-It f(to) + (_1)n-1 ht(to)

~ (_1)n f(to) + (_1)n-1 ht(td

= (_1)n-1 (f(td - f(t o»+ e.
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But then (f-h,)E Un has a negatively oriented alternation in (to, ..., tn)E
Ll n + I(M), in contradiction to Lemma 2.

Subcase 2b. dim Un-II{IO. ".. I,-Ii = dim Un-II {II ..... In! = n - 1.
For h E F( M), let us denote by II the restriction of h to {t I' ..., tn }. Since

Jo, ·..In - I are linearly dependent, there is a minimal i E {O, ..., n - I} with
j~E {la, ···,l-I}, say

j-I

l= I aJ,.,
i=a

Then, proceeding analogously to the proof of Lemma 1 Subcase la in [12J
we get thatJa, ...,l-l,l+I' ...In is a weak M+ system. Now, applying the
induction hypothesis, the strong oscillation (t I' ..., tn) of J is positively
oriented, and we arrive at a contradiction.

The proof for a<O, and (to, ...,tn)ELln+I(M) a positively oriented
oscillation, is completely analogous. Q.E.D.

Following the argument used in the proof of Lemma 13.2 in [IOJ one
gets:

LEMMA 5. Let I, gl' ... , gn E F(M) be defined by (I). Then no
g E lin {I, g I' ..., gn} has a strong alternation of length n + 2.

For the proof of Theorem I, the following two lemmas are essential.

LEMMA 6. Let VJ, ..., Vn be defined by (11), k E {I, ..., n}, [a, {1J c J, and
Vkl[~'/i] E lin {t, VI, ... , Vk- d. Then there is a natural number lEN and a
partition {xo, ..., X I + I} of [a, {1J, such that for every i E {O, ..., l} there is
ii E {I, ..., k} with wji = const on [X,., x i+ I J.

Proof. Without loss of generality, we may assume c = a. It is easy to see
that replacing CEM by GEM the integral representation I, VI' ..., Vn leads
to an integral representation I, VI' ..., Vn , such that for every i E { 1, ..., n} :
lin {I, VI' ..., V,.} = lin {I, VI' ..., Vi} and v,.- V,. E lin {I, ..., v,._ d.

We proceed by induction over n.
n=I: Ifvl=O on [a,{1J, then WI=O on [a,{1J.
n-1=>n: Let Vnl[~./l]E1in{l,vl"",vn_d, then there is DE

lin{l,vl, ...,vn_ l } with V=O on [a,{1] and uElin{l,u2'''''un_ I }\{O},
such that v(t) = L u(t l ) dW I(t l ), t E J where U2' ..., Un are defined by (12).

By Lemma 5 each alternation of u is of finite length, thus there is
xl>c=a, such that either u=O on (c,x I ) or u(s);=O for all sE(c,xd; we
may choose the interval (c, XI) maximal.
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Case 1. U(X) i= °for every x E (e, XI).
Without loss of generality, let u(x»O on (e,xd. Now, suppose

wl(e)<wl(to) for some toE(e,x 1 ). Then there exists E>O, such that
wl(e)<wl(t) for every tEl with It-tol <E. But this implies v(t»O for
every t E [to, XI]' in contradiction to the fact that WI == const on (e, XI).

Case 2. u ==°on (e, XI).
Clearly, u ==°on [e, X I]. By induction hypothesis there is a natural

number II and a partition {Yo, , YIt + I} of [e, XI], such that for each
il E {a, ..., II} there exists iii E {2, , k} with Wi'l == const on [Yil' Yil + I].

We get S;l u(t I) dW I(t I) =° in both cases. Therefore, v(t) =
J~I u(t I) dw(t I) on I. Since u has only finitely many separated zeros,
repeated application of the argument used above yields a partition of
[IX, 13], Q.E.D.

LEMMA 7. Let VI> ..., Vn be defined by (11), kE {I, ..., n}, [IX, 13] el, and
vkl [a. p] E lin {I, ..., Vk_I}. Then for every p E {k + 1, ..., n} there exists IXp E IR,
such that

Proof By Lemma 6 there exists lEN and a partItIon {xo, ..., Xl} of
[1X,f3], such that for every iE{O, ...,I-l} there is iiE{1, ...,k} with

wi,==const on [Xi' Xi+ll

Without loss of generality we may assume:

(A) IX=C;

(B) for every iE{O, ...,I-l} and every iE{f+1, ...,k}, Wi IS

nonconstant on [Xi' Xi+1].

If 1= 1, we have up == 0 on [IX, 13] = [xo, XI] for all PE {lo, ..., n}.
Now, let 1>1, and let [Xj,X i + l ] and [X i+I,Xi+2] be arbitrarily

fixed, so wi,==const on [Xi,X i+l ] and wi'+l==const on [X i+I>Xi+2l For
brevity let q:=ii and r:=ii + I. Now, let us assume q < r. Then, for all
tE [Xi' Xi+l] we have

and
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Since r > q, it follows that

Vr _ I (t) = r...r-2 dwr _ I (t r - 1 ) ••• dwq(tq) . vq_ I (t)
~ ~

for all t E [Xi' Xi+ 1], especially at the point Xi+1:

Vr _ 1(X i + 1 ) = fi ... f'-2 dw r _ 1(t r _ d ... dwq(tq) . vq_ 1(X i + d·
~ ~

This implies

We distinguish several cases and subcases:

Case 1.

Vq_l(xi+d=O.
Then

9

for all tE [IX, Xi + I ], because vq _ 1 is increasing on [1X,oo)nJ and
vq _ 1 (IX) = O.

This implies

o~ vp(t) = ( ...r-2 U:q-l ... r- 1

dWp(tp) ... dwq(tq))

x dwq_ I (t q_ I ) ••. dw I (t 1 )

~ r··· r- 1

dWp(tp)'" dwq{tq)' Vq_ 1(t) = 0
~ ~

for every p> q - 1 and all t E [IX, Xi + 1], so vp == 0 on [IX, Xi + I] for p ~ q.
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Case 2.

Now we assume
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~:Cl

For C 1 we have the following estimate:

o~ C 1 =r··· r-2 (r-1

••• r- 1

dwdtd'" dWr(tr))

x dwr_ 1(tr_ 1 ) ... dwq( tq)

-__-~v-~- _

Since C 1 = C2 . C3' we have to deal with the following two subcases.

Subcase 2a. C3 = o.
Then for each p > r - 1

and therefore vp(x;) = O. This implies vp == 0 on [IX, x;], because Vp(lX) = 0,
and vp is increasing on [iX, 00) f\ J.

Subcase 2b. C2 = C 2 •

If k=r, it follows that Wr (X i + 1)=Wr (x;), and therefore wr==const on
[Xi' xi+d, in contradiction to assumption (B).
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Now, let k>r. Then there exists (E [x" X'+l]' such that

This implies

11

so vp == 0 on [a, xJ for every p ~ r.
Summarizing the above considerations, we have in case I> 1:
For all intervals [X"X'+I] and [X'+1,X'+2]' iE{O, ...,1-2}, with

}, <}i+ 1 either

(a) Vp == 0 on [a, X i +1] for every p ~ k, and the sequence (js)~:':+ 1is
strictly increasing, or

(b) vp == 0 on [a, x J for every p ~ k, the sequence (jJ~:': + 1 is strictly
increasing, and C1 = C2 . C3·

Now, consider the partition {X'+I' ...'X,} of the subinterval [Xi+I,PJ.
For each interval [x" x s + 1] with s ~ 1 we have

I
X

;+ I I'k-I
= ... dWk(tk)··· dw (t )

j/+ I j,+ 1
a a

=: Ci+l,k

s IX' i'l, In ... - dw, I(t, +1)···dw,(t,)·V'_l(t)
h-l+ h-l ]v]v Js

v=i+2 ex ex
;'

=: Ys

for all t E [x" X s + 1]; if s = i + 1, then let ys = 1.
Analogously we compute

fX;+' I'P-I
V (t)= .. , dw(t)···dw(t·.)·"·V'l(t)p P P h+l 11+1 Is )s-

a a-----""'------
=: Ci+I,P
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Further distinctions are needed:

Case I. Ci+ I,k = O.
Proceeding as in Case lone gets C i + 1,p = 0 for every p > k. Therefore,

vp==O on [Xi+1' fJ] for every p"3k.
Besides, C i + l,k = 0 implies

J' J'k-I... dwk(tk)···dw (t )=0
11+1 11+1

~ ~

for all tE [IX, Xi+1]. So we have vp==O on [IX, Xi +1] for every p"3k.
Thus, vp==O on [IX, fJ] for every p"3k.

Case II. Ci+ 1.k > O.
For each interval [x" x s + 1] with s"3 i + 1 we have

Vk
YS'Vj,-l=C-'

i+ l,k

so one gets

V = Ci +1,p·V
p- k

Ci + 1,k

on the set [IX, xJ U [x i + 1> fJl
If Vp == 0 on [IX, x i + 1] for every p"3 k, obviously

V = Ci + 1,P'V
p- k

Ci + 1,k

on [IX, fJl
Now, let us assume vp==O on [1X,Xi] and C 1=C2 ·C3 • Then, for all

t E [Xi' Xi + 1] and p "3 k we have

-----""--/"-----
=: Ci,p

Vk(X;) = 0 implies directly Ci,p = 0, and therefore Vk == vp== 0 on [IX, Xi+ 1].
If Vk(X;) > 0, we especially have Ci,k> O.

For all tE[Xj,Xi+rJ follows
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and, in particular, for x i + I

Ci + I,p ( )
=--'Vk X i + 1 .

Ci+l,k

Ci,p _ C i + I,p

Ci,k - C, + I,k

So we finally get

on the interval [e<, Pl
This completes the proof of Theorem 1.

To prove Theorem 2 we need the following results:

13

Q.E.D,

LEMMA 8. Let e, deM and let 1,f1, ...,fneF(M) be a weak Markov
system with Property (E). Iffl l [c, d] n M == canst, then fi [c, d] n M == canst for
every fe Un'

Proof For n ~ 1 the statement is trivial.
n - 1= n : By Condition (El) there exists a weak M + system 1,

gl' ..., gn EF(M) with lin {l, ..., gj} = lin {l, ...,fj} for every j E {l, ..., n},
By the induction hypothesis every g E Un _ I is constant on [e, d] n M.
As Un is a weak Tchebycheff space, there exists c, JeM with c~ e <

d ~ J, such that 1,f1' ...,fn are linearly independent on [c, 00) n M as well
as on (- 00, J] n M.

Now let 1, UI , ... , Un e F(M) with Property (E2) on the set [e, 00) n M
and let 1, VI' ..., VnEF(M) with Property (E3) on ( - 00, d] n M.

Let card(Mn [e, d])~2. Thus, for all (tl' tz )eL1 z(Mn [e, d])

1 ( _1)n! I Vn(t I) (- 1r! I Vn(t Z ) I = ( _1)n - I (vn(t z) - Vn(t d)

=(_1)n-1 (gn(tz)-gn(td)

~o

holds, because of 1, (-1) -I Vn is a weak M + system on the set
(-00, J] nM, and vn=gn+g with gElin{l,gl' ...,gn-l}'

640/68/1·2
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First let us assume that there exists a point i EM, i < c with II (t) # II (c).
Applying Condition (E3) we get

( _l)n - 2 VI (t) VI (t I ) VI(t 2)

vn(t) Vn(tl) Vn(t2)

o o
Vn(t) Vn(tl) Vn(t2)

= (_l)n-2 (gl(t l )-gl(t))(gn(t2)-gn(td)

~O.

So g I (t I) - g I (i) > 0 implies gn(t d = gn(t 2) for all (t I' t2) E L1 2( [c, d] (\ M).
If II == const on ( - 00, d] (\ M, there exists a point tEM, i> d with

II (d) #11 (i).
Using Condition (E2) we have

Iu)t l )

1

Ul(tl) UI(t 2) ul(t) = (gl(td - gl(t))(gn(t2) - gn(td) ~O,

un(td un(t2) un(t)

and gl(tl)-gl(t)<O. Thus, gn(t2)=gn(tl) holds for all (t l , t2)E
L1 2 ( [c, d]n M), and the statement readily follows. Q.E.D.

DEFINITION. Let f, g E F(M). Then g is called

(a) C-bounded on M, if g is bounded on [a, b] (\ M for every
a,bEM;

(b) Lipschitz-bounded with respect to f, if for every a, bE M there
exists K> 0, such that

I g(x)-g(y)1 ~KII(x)-I(y)1 for x, y E [a, b] (\ M.

A weak Markov system 1, II, ...,fn E F(M) is called Lipschitz-bounded
with respect to II (C-bounded), if all functions II, ... ,fn are Lipschitz­
bounded with respect to II (C-bounded).

In [9] Zalik proved C-boundedness for weak Markov systems with the
Properties (E) and (I).
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LEMMA 9. Every normalized weak Markov system 1, /1' ... ,fn E F(M)
with Property (E) is C-bounded.

Proof Obviously, it is sufficient to show C-boundedness for the
system 1, gl, ...,gnEF(M), given by Condition (El).

For n ~ 1 the statement is trivial.
n-l =:>on: Let us suppose there are c, dEM such that gn is unbounded

on the set [c, d] n M. Therefore, the function gn E Un possesses at least one
pole p E [c, d] n M.

SO there is a sequence (td;:'=o in the set [c, d] n M converging to p with
limk-Ho I gn(tk)1 = 00. Without loss of generality let to> tk for every k ~ 1.

Moreover, there is a point cE(-oo,c]nM, such that l,gl, ...,gn are
linearly independent on the set [c, 00) n M.

By the induction hypothesis we have un=gn+g with gE Un-I, which is
bounded on [c, d] n M. Condition (E2) implies that the sets {un} and
{l, un} form weak M+ systems on [c, 00) n M. Thus, for each k ~ 1 there
follows

Un (tk) =gn(tk)+g( tk) ~ 0

and

Therefore, the unboundedness of the sequence (gn(td);:'=o leads to a
contradiction. Q.E.D.

LEMMA 10. Every normalized weak Markov system 1, /1' ... ,fn E F(M)
with Property (E) is Lipschitz-bounded with respect to /1 .

Proof We are going to prove the statement for the weak M+ system 1,
gl, ..·,gnEF(M), given by Condition (El).

If n ~ 1, the statement is obvious.
n - 1 =:>0 n: Let (c, d) E L1 2 (M) be fixed. There are c, ;1E M with C~ c <

d~d and

dim Un1u.co)nM=dim Unl(-co.d]nM=n+ 1.

Moreover, let us assume that 1, VI> ... , Vn E F(M) fulfill Condition (E3) on
(-00, d] nM.

Case 1. There are (io,1l>12)EL1 3([c,d]nM) with gl(io)<
gIUd < g1(12)' By Condition (E3) the sets
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form weak M+ systems on (- 00, a] n M. Therefore VI and (-1 t- I Vn
are increasing on (- 00, a] n M, and

I
VI(X) vI(Y) I

(-It vn(x) vn(Y) =(-It(vn(y)vI(x)-vn(x)vI(Y))~O

for all (x, y) E Az(M n (- 00, aJ).
Now let (to,t l ,tz )E.1 3(Mn(-00,a]) be fixed, such that gl(to)<

gl (td <gl (t z )· Then

1

(_l)n-Z vl(tO) VI(t l ) vl(tz)

vn(to) vn(td vn(tz)

= (_l)n-Z [(vn(td vl(to) - vn(tO) vl(td)

- VI (tz )(vn(td - vn(to)) + Vn(tZ)(VI (t I) - VI (to))]

= (_l)n-Z [(vn(td-vn(tO))(VI(tO)-VI(tZ))

+ (vn(tz) - vn(to))(v i (t I) - VI (to))]

=: DI~O.

By a simple calculation one shows

D1

(VI(tz) - vl(tO))(VI(t l ) - vl(to))

=(_It-z(Vn(tz)-Vn(to)
vl(tZ)-VI(tO)

Let to E (- 00, d) n M be fixed. Then

( ) ._ (_I)n-Z vn(x)-vn(to)
qJto X .-

gl(x) - gdto)

is well defined on the set M to : = {t E (to, 00) n Mig I(to) < g I(t)} .
As the functions V I and' ( _l)n - I Vn are increasing on ( - 00, a] n M, qJ to

is nonpositive, increasing, and bounded from above.
A similar computation of the determinant DI gives

D1

(V l (t2) - Vl (to))(v l (t2) - VI (to))

= (_l)n-2 (Vn(tI)-Vn(tZ)
vl(td-vl(tz )
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For fixed t2 E ( - 00, d] n M the function

17

is increasing, nonpositive on M t2 := {tE(-oo,t2)nMlg,(t)<g,(t2)},
and therefore bounded from above.

Applying the induction hypothesis to gn = Vn + g, g E Un_" the
Lipschitz-boundedness of gn directly follows from the fact that ({Jtl and ({Jt2

are bounded from above.

Case 2. If g ,( [e, d] n M) consists of no more than two points, the
proof of the statement follows by Lemma 8. Q.E.D.

Throughout the following considerations on relative derivatives we can
assume:

1. / = (a, b) an open and bounded interval

2. 1, I" ...,In E C(I) a normalized weak Markov system.

These assumptions mean no loss of generality, because in [8] Zalik
proved the following embedding property of weak Markov systems:

Every C-bounded normalized weak M+ system 1, I" ...,fn E F(M) is
embeddable in a normalized weak M+ system 1, g" ...,gnEC(l), where /
is an open-bounded interval, i.e., there is e E M and a strictly increasing
function h:M-+/ with h(e)=c, such that gj(h(t))=fj(t) for every
j E {O, ..., n} and every t E M. Examining the proof one sees that if
1, 1" ..·,fn E F(M) has Property (E) this also holds for 1, g" ..., gn E C(I)
(see Theorem 3 in [9]).

Examining the proof one sees that if 1, I" ...,fn E F(M) has Property (E)
this also holds for 1, g" ...,gnEC(I) (see Theorem 3 in [9]).

DEFINITION. Let f, g E C(I), I monotone and nonconstant, and for
rx E / let

R~:= {xE(rx,b)l/(rx)¥I(x)},

r~:= inf R~,

Moreover, let

L~:= {xE(a,rx)l/(x)¥I(rx)},
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Then the right and left relative derivatives of g with respect to f are defined
by

. g(t) - g(~)

D + g(~) == hm f( ) -f( )' ~ E I R
t-ra+ t (X

and
. g(t) - g(~)

D - g(~) = hm f() f( )'
t _'0_ t - ~

The concept of relative differentiation in normalized weak Markov
spaces was introduced by Zielke in [11].

To prove Theorem 2 we need the following result, which may be of some
independent interest:

THEOREM 3. If 1,1" ...,In E C(I) is a weak Markov system with Property
(E), then

D + f" ..., D + fn E F( I R )

and

are normalized weak Markov systems with Property (E).

LEMMA 11. Let 1, f" ... ,In E C(I) be Lipschitz-bounded with respect to
f,. Then for every g E Un

(a) D+g(t)ElRfor all tEIR ;

(b) D _ g(t) E IR for all t E h.

The proof of Lemma 11 is completely analogous to the last part of the
proof of Lemma 11.3(a) in [10], and will therefore be omitted.

LEMMA 12. Let g E Un be Lipschitz-bounded with respect to fl' Then

(a) D + g(t) == 0 for all tE (c, d) c I R implies g== const on (c, d);

(b) D_ g(t)=Ofor all tE(C, d)cIL implies g==conston (c, d).

Proof Without loss of generality we may assume that f, is increasing.
At first, let g be increasing, too.

Fix e> 0 and let Xo E (c, d). Because of D + g == 0 on (c, d) we have for
x>rxQ

if the distance Ix - r XQ I is sufficiently small.
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The above estimate implies

ef(xo) - g(xo) < ef(x) - g(x).

19

By Riesz's lemma (see, e.g., [3, p. 319]), for each closed interval
[y, <5] c (c, d) there follows

ef(y) - g(y) ~ ef(<5) - g(<5),

and therefore

g(<5) - g(y) ~ e(f(<5) - f(y)).

Since e> 0 was arbitrary, g( [y, <5]) = [g( y), g(<5)] is a degenerated interval,
thus g == const on (c, d).

Now, let g E Un be arbitrary. By Lemma 3 there exists a natural number
k ~ n + 1, and points Po, ..., Pk with c =Po < ... < Pk =d, such that g is
monotone on each interval (Pj' Pj + I ), j E {O, ..., k - 1}.

Thus, g == const on every interval (Pi' Pi + d. Since D + g(Pj) = 0,
j E {l, ..., k - I}, we get g == canst on (c, d).

The proof of part (b) is completely analogous to the proof of part (a)
and will be omitted. Q.E.D.

Proof of Theorem 3. One easily sees from Lemmas 10 and 11 that
D + : Un -+ F(IR) is a well-defined linear operator.

Clearly, kern D + contains Uo, so D + Un is a subspace with
dim D + Un ~ n. Applying Lemma 12 it follows Uo= kern D +' and therefore
dim D + Un = dim Un - dim (kern D + ) = n. Proceeding as in [10, Lemma
11.3(b)] we conclude that D + fl' ... , D + fn E F(IR) is a normalized weak
Markov system.

By Condition (E1) there exists a normalized weak M + system I,
gl' ..., gn E C(I), such that for each j E {I, ..., n}

lin {1, ...,Ji} = lin {1, ..., gj }.

We show that D + g I' ..., D + gn E F(IR) is a normalized weak M + system,
if fl is increasing; if fl is decreasing, then - D + g 1> ... , - D + gnE F(IR) is a
normalized weak M+ system:

Letfl be increasing, kE {I, ..., n}, (fl' ..., t k )E.1 k (IR ) and cpED+ Uk with

Suppose that

(_l)k-icp(t;)<O for i= 1, ..., k.
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Then there are functions g E Uk and g E Uk _ I such that <P = D + g,
g=exgk+g, and iP=D+ g.

Since (-1)k-;<p(t;)<0 for each iE{1, ...,k}, there exists (uI, ...,UdE
Jk(I) with Uk E (t b b) and U;E (t;, t;+ d for any i E {1, ..., k -1}, such that

As fl is increasing we have

( _1)k -; (g(u;) - g(t j )) < 0

i= 1, ..., k.

i= 1, ..., k.

Consequently (tt> U I , ... , tb Uk)EJ 2k (I) contains a negatively oriented
oscillation of g = exgk +g E Uk' in contradiction to Lemma 4.

If fl is decreasing, the proof is completely analogous.
Conditions (E2) and (E3) can be shown by analogous arguments.

Q.E.D.

Note, that the oscillation Lemma 4 for normalized weak M + systems
was essential to prove Property (E) for the relative derivatives.

Proof of Theorem 2. Let 1, fl, ...,fn be a weak Markov system with
Property (E).

For n~ 1 the statement is trivial.
n - 1 => n: By the embedding property of weak Markov systems 1,

fl' ...,fn is embeddable in a weak Markov system 1, ZI, ..., Zn E C(I),
J := (a, b) open and bounded, i.e., there is C E M, and a strictly increasing
function hi :M-+J with hl(c)=c, such that h(x)=zj(hl(x)) for every
j E {l, ..., n} and for every x E M; 1, Z I' ... , Zn has Property (E).

From Theorem 3 follows that the left and right relative derivatives of 1,
Z I' ... , Z n are nomalized weak Markov systems with Property (E).

Now let JRand JL be defined as above. If there is ex E J, such that
Z I == Z I (ex) on [ex, b), let us define

and bI : = b, if there is no such ex.
If bl < b, we have sup JR= b l E JR'
By Lemma 9, 1 = D + Z I' ... , D + Zn E F(IR) is C-bounded. Thus there is a

normalized weak Markov system 1, <PI' ..., <fJn E F(I) such that for each
jE {2, ..., n}

and, if b l <b

X E [b l , b).
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Obviously, 1 = qJ I' ... , qJn E F(I) has Property (E), and, using the induction
hypothesis, it is representable. So there is eEl, a strictly increasing function
h2 : I ~ rR with h2 (c) = C, and increasing functions W2 , ••• , WnE C(K(h 2 (I)))
with w2 (c) = .. , = wn(c) = 0, such that for every j E {2, ..., n} and for every
XEI

Now, let us define rPj on the convex hull of h2(I) by

j=2, ..., n.

Without loss of generality we may choose C= c.
Let WI be defined by wl(x)=ZI(h;I(X)), xEh2 (I), and on the convex

hull of h2 (I) by linear interpolation in the same way as in the proof of
Theorem 3 in [11].

Setting h=h2
o hl> then for XEM andjE {1, ..., n} we get

an integral representation of 1'/1, ...,fnEF(M).
Now, let 1, fl' ...,fn EF(M) be representable. Then there is a basis 1,

gI' ... , gn EF(M) of Un defined by (I). Obviously, it is sufficient to show
Property (E) for the corresponding system 1, VI> ..., VnE C(J) defined by
(11 ).

By Lemma 5, 1, VI' ..., VnE C(J) is a weak Markov system.
Proceeding by induction over n, we will prove
(1) 1, VI> ..., VnE C(J) is a normalized weak M+ system.

Proof of (1). For n = °the statement is trivial.
n-1 =n: Let vElin{1, ..., vn}, say

n

V= I (XiVi,
i=O

with (Xn > 0, (X; ErR for i = 0, ..., n - 1

j=o, ..., n.

and let us suppose that V has a negatively oriented alternation of length
n+ 1 in (to, ..., In)EAn+I(J), i.e.,

( - 1t -j v( lj) < 0,

Then, for every j E {1, ..., n };

O>(_l)n-
j
(v(tj)-V(tj-d)=(-l)n-

j
(tl (X;V;(tj)-;tl (X;V;(lj_d}
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n

U = (XI + I (XiUi,
i~2

where U2' ..• , Un are defined by (12); note that, by the induction hypothesis,
1, U2' ... , Un is a weak M + system. Therefore, for every j E {I, ..., n}, there
exists (jE [tj _ l , tj ], such that

O>(_l)n-jr u(s)dwI(s)=(_l)n-ju((j)(wI(tj)-wI(tj_d).
1}-1 ______

:;,0

But then, U has in (( I' ... , (n) E Ll n(1) a negatively oriented alternation of
length n, in contradiction to Lemma 2.

It is easy to see that it is sufficient to prove Condition (E2) on
[c, (0) n J and Condition (E3) on (- 00, c] n J.

(2) If 1, VI' ..., Vn is linearly independent on [c, oo)nJ, and (k(l))r=o
and arbitrarily fixed subsequence of {O, ..., n}, then vk(O)' ..., vk(m) is a weak
M+ system on [c, (0) n J.

Proof of (2). We distinguish two subcases.

Case 1. k(O) = O.
For m = 0 the statement is obvious.
m - 1 => m : Then, for all t E [c, (0) n J,

Vk(l)(t) =rdVk(I)(tk(I))
c

and, for all iE {2, ..., m},

On the set [c, (0) n J, Vk(l) is increasing and nonnegative. Now, proceeding
as in the proof of Lemma 13.2 in [10J, and following the arguments used
in (1) one gets: 1, Vk(l)' ..., Vk(m) is a weak M+ system on [c, (0) n J.

If k(O) > 0, these arguments are not applicable. But in that case we have
v(c)=O for every vElin{vk(o), ..., Vk(m)}'
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Case 2. k(O) > O.
If m = 0, then the statement follows by the fact that vk(O) is increasing on

[e,oo]nJ.
m - 1= m : Let us suppose that there are v E lin {vk(Oj, ... , vk(m)} and

(to, ..., t m + 1)ELf m + 2([e, oo)nJ), such that

( _1)m + 1-Jv(tJ < 0, j=O, ..., m+ 1.

V( e) = 0 implies c < to. Setting t _ 1 : = e, it follows that

I
Ii

(_1)m+I-J . v(S) dVk(Oj(S) <0,
lJ-l

with v E lin {vk(O)' ..., Vk(m)}, where

j=O, ..., m+ 1

for iE {I, ... , m}.
But then, proceeding completely analogously to the proof of

[10, Lemma 13.2] v would have a strong alternation of length m + 2 in
[e, 00 ) n J, a contradiction.

Moreover, using the fact that v(e)=O for every vElin{vk(o), ..., vk(mj},
and, following the arguments of (1) one gets: 1, Vk(I)' ... , vk(m) is a weak M+
system on the set [e, (0) n J.

The proof of Condition (E3) is completely analogous to the proof of
Condition (E2). Q.E.D.
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