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A necessary and sufficient condition for the existence of an integral representation
of weak Markov systems is given. This theorem generalizes results of Zalik and
Zielke. The proof is based on the relative differentiation method of weak Markov
systems introduced by Zielke, and on new alternation and oscillation properties of

weak M™* systems, which may be of some independent interest.  © 1992 Academic

Press, Inc.

TERMINOLOGY AND RESULTS

For a nonempty subset of the real line, 4 < R, let us denote its convex
hull by K(A4). Let Mc R withcard M>2n+2, ce M, and h: M — R strictly

increasing with /(c) = c. Moreover, let J:= K(h(M)), and let w,,

C(J) be increasing functions with w;(c¢)=0 for every je {1, .., n}.
Define, for xe M,

h(x)
gl(x)=f dw,(t;)
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and for te J,

Ul(t):j[dwl(ﬁ)

0,00 = [ [ [ (1) dwa(t) (1),

H
SIS ¢

uz(’)=[.’dwz(lz)

C

(12)

w0 = 7 [ (1) dwa(13) dwaes)

¢ (s ¢

Moreover, let F(M):= {/* M > R}, fo, . fre F(M), A (M) := {xe M*:
x < - <x} forkeN, and U;:= lin{f,, .., f;} for ie {0, .., n}.

Provided that f, .., f, € F(M) are linearly independent and
det(fi(t;))o<i,;<~ has a weakly constant sign for all (¢, ..,t,)ed, (M),
Jo» - fn is called a weak Tchebycheff system on M; we say f,, ..., f, € F(M)
is a weak T system, if the sign is nonnegative. fj, ..., f,, € F(M) is called a
weak Markov system (weak M ™ system) on M, if f;, .., f; is a weak
Tchebycheff system (weak T* system) for every je {0, .., n}.

If, in addition, f, =1, a weak Markov system f, .., f,, (weak M ™* system)
is called normalized.

A normalized weak Markov system 1, f|, .., f, € F(M) is called repre-
sentable, if there are functions 1, gy, .., g,€ F(M) defined by (I) with
lin{t, .. g} =ln{l,., [} for every je {1, ., n}.

DerFiNiTiON. Let fe F(M). Points (x, .., x,)ed,(M) are called a
strong alternation of length k of f, if there exists 7€ { —1, 1}, such that
(-1 f(x,)>0  for i=1,.,k.

A strong alternation is called positively oriented, if and only if T =1.

The following lemma is [10, Lemma 4.1]

LeMMA 1. Let fy,...f,€ F(M) be linearly independent. Then the
Sfollowing two statements are equivalent:

(@) fo, - fr is a weak Tchebycheff system;
(b) No fe U, has a strong alternation of length n+ 2.

Subsequently, we shall derive some new alternation and oscillation proper-
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ties of weak M* systems (Lemmas 2 and 4) and use them to obtain new
properties of representable weak Markov systems.

LEMMA 2. Let fy,...f,e F(M) be a weak Markov system. Then the
following statements are equivalent:

(@) Sfor - Sy is @ weak M ™ systems;

(b) fo=0 and for each function f=af,+g, geU,_,,a#0, with a
strong alternation of length n+ 1 in M, the alternation is positively oriented,
if and only if a>0.

DEfFINITION. Let k> 2. An fe F(M) has a strong oscillation of length &
if there exists (x,, .., x,)€4,(M) and 1€ {—1, 1}, such that

(=1 (f(x)—f(x,_))>0  for i=2, ..,k

The strong oscillation is called positively oriented, if and only if 7= 1.

The following lemma was developed in [11, 14]. In [12] an elementary
proof, without use of the GauBkernel approximation of weak Markov
systems by smooth Markov systems, was given.

LEMMA 3. Let 1, fy, .., f, € F(M) be a normalized weak Markov system.
Then no fe U, has a strong oscillation of length n+ 2.

Lemma 4. Let 1, f\, ... [, € F(M) be a normalized weak M ™ system. If
the function fe U, with f=af,+g, geU,_,, a #0, has a strong oscillation
of length n+ 1, then the oscillation is positively oriented, if and only if « > 0.

DEFINITION. A normalized weak Markov system 1, f, .., f, € F(M) is
called weakly nondegenerate, if for every a, beM and for every
Jje{0,.,n—1}

Siaeynm €U = Jivtkamyam €Uy
Our definition of weak nondegeneracy is different from the definition

introduced by Zalik in [9].
We will prove

THEOREM 1. Every representable weak Markov system 1,g,, .., g,€
F(M) is weakly nondegenerate.

DEeFINITION. A normalized weak Markov system 1, f,, ..., f,,€ F(M) has
Property (E), if the following conditions are satisfied:
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(E1) There exists a normalized weak M * system 1, g,, ..., g, € F(M)
such that lin{1, .., g;} =lin{1, ..., f;} for every je {1, .., n}.

(E2) For every point ceK(M) with dm U, o) ~su=n+1,
there exists 1, u,..,u,e F(M) with u,—g,elin{l,..,g; ,} for every
je{l1,..,n}, such that for any ordered subsequence (k(/))7_, of {0, .., n}
the functions gy, ..., Ux(m) form a weak M * system on [c, o) N M.

(E3) For every point ce K(M) with dim U, y~u=n+1, there
exists 1, vy, ..., v,€ F(M) with v,—g,elin{1, .., g; ., } forevery je {1, .., n},
such that for any ordered subsequence (k(I))7, of {0,..,n} the
functions (—1)*@ =%, 4y, wo (=1~ 1, form a weak M * system on
(—o0,c]N M.

In [9] Zalik introduced Property (E) for weak Markov systems, and he
gave an integral representation for weak normalized Markov systems with
the conditions of Property (E) and the following Condition (I) (see
Theorem 3 in [9]).

Condition (1). For every real number c, the weak Markov system is
linearly independent on at least one of the sets (¢, 0)nM and
(—o0,c)n M.

A representable weak Markov system does not fulfill Condition (I) in
general as the following example shows:

Let M={—1,0,1} and let the functions f,f,,f,€ F(M) defined by
fi(Hy=r,ie{0,1,2}.

Zielke has shown in [11] that every nondegenerate normalized weak
Markov system is representable. A weak Markov system is called non-
degenerate, if for every ce M the functions are linearly independent on
both of the sets (¢, 0} M and (— o0, ¢)" M.

Our main result is

THEOREM 2. A normalized weak Markov system 1, f1, .., f,e F(M) is
representable, if and only if it has Property (E).

PROOFS OF THE RESULTS

Proof of Lemma?2. We proceed by induction over n.

(a)=(b): For n=0 the statement is trivial.

n—1=n:Let (t, .., t,)€4,, (M) be a negatively oriented alternation
oflengthn+1of f=af,+g, a>0and ge U, _,. An easy calculation shows

det(tolt:f">=i gof(tj)(—l)"‘fdet (f°"' "'f””)so.

oty Lol i Iy
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Proceeding as in Lemma 4.1(b) = (a) Subcase 2 in [10], we get
dlm U”‘ “{,0’ . t,,} =N

So there is jy€ {0, ..., n} with

(7 i)

tO“ t]() ltj()+1 [n

det( AP
to- 1,
in contradiction to the fact that fy, ..., f, is a weak M * system.

If a<0 and (¢,..1,)€4,,,(M) is positively oriented, then the
statement follows completely analogously.

Thus

(b)=(2): The case n=0 is trivial.

n—1=-n:By induction hypothesis f,,..,f,_; is a weak M* system.
Suppose there exists (xq, ..., X,) €4, (M) such that

det (fo---f,;) <0.

xo.;.x

Thus,
det (fo---fn)so

ty---t,

for every (¢g, .., 1,)€d, . (M)
Since dim Uy, .. ) =n+ 1, there is exactly one fe U, with

fx)=(=1y",  j=0,.,n
Then we have f=uf,+g,2geU,_,,a>0, and

S

Xg X, o Xo - xj lx_]+1 X,
—_1. < fO ”'fnfl
_aj.;odet<x0"'xf*1xf+l"' x, )

By the induction hypothesis

det<0... ---f,zl)>O, j=0,...,n,

xO"'xj~1xj+l"' xn
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in contradiction to

det (){211'_{:

) <0. QED.

n

Proof of Lemma 4. Let 1, f1, .., f, be a normalized weak M * system.

If n=1, then the statement is trivial.

n—1=>n:Let felU, with f=of,+g, geU,_,, >0, and Ilet
(to, - t,) €A, (M) be a negatively oriented oscillation of length n+ 1,
ie.,

(=" (f())=f(t;_)) <0, j=1,.,n

Proceeding as in the proof of Lemma 4.1(b)=>(a) Subcase 2 in [10], we
may assume that the restriction of U, | to {to,..,t,} =M is a vector
space of dimension .

Case 1. dim U, 1y .\ =N
For each ¢> 0 there is a function s, e U, _, such that

he(tj)=f(tj)+8(_1)n¥ja j=0,.,n—1

Now fix an ¢ with O<e<jmax{|f(s;)—f(t,_))|j=1,..,n}. By the
induction hypothesis it follows that 4. (¢,)=4.(¢,_,). Taking into
consideration that

S(1) =h(1,) <f(t,)—f(t,_ ) +e<0

and (f—h,)(t;)=e(—1)""'""/ for each je{0,.,n—1}, we see that
(f—h,)e U, has a negatively oriented strong alternation of length n+1 in
(tos --r 1,) €A, (M), in contradiction to Lemma 2.

Case 2. dimU,_ (4 .\ y=n—1
We distinguish the following two subcases:

Subcase2a. dim U,_,(,, ., =n
For every ¢ > 0 there is h,e U, _, with

h()=f)+e(—1), =1, ..n

Now, let us fix ¢ > 0 sufficiently small. By the induction hypothesis we have
(=1)"" " h(t5) S (=1)"" ' h,(t,), and

(= 1" (f=h)(t0) = (—1)" fto) + (= 1)"~ " h(t,)
S (=1 ft) + (= 1)"" " hy(t))
=(—1)" () —f () +e
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But then (f—#h,) e U, has a negatively oriented alternation in (¢, ..., ,) €
4, (M), in contradiction to Lemma 2.

Subcase 2b. dim U, . ., =dimU,_ ., . =«n—1
For he F(M), let us denote by / the restriction of 4 to {f,, .. t,}. Since
fo» - fn_y are linearly dependent, there is a minimal je€ {0, ..,n—1} with

f}e {fos s fi_1 ), say

Then, proceeding analogously to the proof of Lemma 1 Subcase 1a in [12]
we get that f,, ...,ﬁ,l,fj+l, o [y is @ weak M™* system. Now, applying the
induction hypothesis, the strong oscillation (r,..,,) of f is positively
oriented, and we arrive at a contradiction.

The proof for a<0, and (4, .., t,)e4d, . (M) a positively oriented
oscillation, is completely analogous. Q.ED.

Following the argument used in the proof of Lemma 13.2 in [10] one
gets:

LEMMA 5. Let 1, g, .., g, € F(M) be defined by (1). Then no
gelin{l, g,, .., g,} has a strong alternation of length n+ 2.

For the proof of Theorem 1, the following two lemmas are essential.

LEMMA 6. Let vy, .., v, be defined by (11), ke {1, ... n}, [o, pl < J, and
Viimpr €N {1, v\, ., v,y }. Then there is a natural number [e N and a
partition {xq, .., x,,.} of [a, Bl, such that for every i€ {0, .., 1} there is
Ji€{l, .., k} with w, =const on [x;,x,,,].

Proof. Without loss of generality, we may assume ¢ = a. It is easy to see
that replacing ce M by ¢e M the integral representation 1, v, ..., v, leads
to an integral representation 1, 7, ..., ,, such that for every ie {1, .., n}:
lin{1,v,,.. v} =lin{l,?,, .., 5;} and v,—¥;€lin{l, .., v, }.

We proceed by induction over n.

n=1:1fv,=0on [« f], then w, =0 on [« §].

n—1=n: Let v,p €lin{l,v,,.,v, ;}, then there is ve
lin{l,v,,..,v,_,} with v=0 on [a, f] and uelin{l, u,,..,u,_,}\ {0},
such that v(t) = [ u(t,) dw,(t,), t € J where u,, ..., u, are defined by (12).

By Lemma 5 each alternation of u is of finite length, thus there is
x,>c=uo, such that either u=0 on (¢, x,) or u(s)#0 for all s€ (¢, x,); we
may choose the interval (¢, x,) maximal.
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Case 1. u(x)#0 for every xe(c, x;).

Without loss of generality, let u(x)>0 on (c, x,). Now, suppose
wi(c)<w(ty) for some fy€(c, x,). Then there exists £¢>0, such that
wi(c) <w,(t) for every teJ with |t —t,| <& But this implies v(¢) >0 for
every t€ [y, x, ], in contradiction to the fact that w, =const on (¢, x,).

Case 2. u=0on (¢ x,).

Clearly, u=0 on [c, x,]. By induction hypothesis there is a natural
number [, and a partition {y,,..,y,,} of [¢, x,], such that for each
i€ {0, .. 1, } there exists j, € {2, .., k} with w; =const on [y, y; ]

We get [ u(t;)dw,(t;)=0 in both cases. Therefore, v(t)=
| L u(t)dw(t;) on J. Since u has only finitely many separated zeros,
repeated application of the argument used above yields a partition of

[o 8] QED.

LemMMma 7. Let vy, .., v, be defined by (11), ke {1, .., n}, [a, Bl < J, and
Vit g1 €NN{1, .., v, }. Then for every pe {k+1, .., n} there exists o, € R,
such that

Upita, 1= %pVk|[a 61

Proof. By Lemma 6 there exists /e N and a partition {x,, .., x,} of
[, B], such that for every ie{0,..,/~—1} there is j,e{l,..,k} with
w; =const on [x;, x;, ]

Without loss of generality we may assume:

(A) a=c;

(B) for every ie{0,..,/—1} and every je{j+1,..,k}, w, is
nonconstant on [x;, x;, ]

If /=1, we have v,=0 on [a, B] =[x, x,] for all pe {jo, .., n}.
Now, let />1, and let [x;, x;,,] and [x,,,,x,,,] be arbitrarily
fixed, so w,=const on [x,,x,,,] and w,  =const on [x,;,,x;,,]. For

brevity let g:=j, and r:=j,,,. Now, let us assume g <r. Then, for all
te [x;, x;, 1] we have

w(y=[ "

4 23

T dwl) - dw (1) - dy (1)

X

[ ) diy ()0, ()

and
o= [ dwit) - dw(2) -0, (1)

o @

for all te [x;, 1, Xiy2]
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Since r > g, it follows that

o= [ [ () ()0, ()

X a

for all re [x;, x;, ], especially at the point x,, ,:
X tr-2
0 G )= [ () dw () 0, ()
This implies
Xij te -1
v ) =] [ dw(n) () v, (3 )
Xi+1 U1
= [ ) 1) 0, (i)

zr”' ...f’k“l dw () - dw, (1)

a 24

T () () o, )

o

We distinguish several cases and subcases:
Case 1.
Uq~1(xi+l)=0'
Then
t tq—Z
v ()= o [ dwy () (1) =0

for all re[a, x;,,], because v, , is increasing on [a, 0)nJ and
v,_1(a)=0.
This implies

0<vp(t)=£:...£:H (qu...ftp—' dw,,(t,,)--~dwq(tq)>

a

deq,l(tq‘l)"'dw1(t1)
gj '...jk dw,(1,)-dw,(t,)-v,_1(£)=0

for every p>g—1and all re[a, x;,,],50v,=0o0n [, x,,,] for p>gq.
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Case 2.

Now we assume

4

f,_.f” dwk(tk)"‘dwq(tq)=j:‘” ___J'H dw, (1) - aw,(t,)

=:C =:(3

' r""jtﬂdWr-l(trfl)deq(fql

o >4

=:(C3

For C, we have the following estimate:

o<c=[" [ ( [ dwk(rk)--dw,(t,))

3

derfl(tr—l)"'dwq(tq)

SJX'...W" dw, (1) ---dw,(1,)

a x

=0

’ J‘x’...J“PZ dW,,l(tr7])~--dwq(tq).

o o

=y
Since C,=C,-C;, we have to deal with the following two subcases.

Subcase 2a. C;=0.
Then for each p>r—1

r"...j""z...f" dw,(1,) - dw, (1, })---dw,(1,)=0,

o o

and therefore v,(x;) =0. This implies v,=0 on [a, x,], because v,(x)=0,
and v, is increasing on [«, co)NJ.

Subcase 2b. C,=C,.
If k=r, it follows that w,(x,;,,;)=w,(x;), and therefore w,=const on
[x;, x;, 1], in contradiction to assumption (B).
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Now, let k> r. Then there exists { € [x;, x,, ], such that
Xit+t -1
0= " [ () dw (1)

{ -1
= (0, e )= x))- [ e[ dwln) a1, ),

[+2 o

This implies

Xj Y1
[ [ ) dw, ) =0,

-4

so v,=0on [a, x;] for every p>r.

Summarizing the above considerations, we have in case /> 1:

For all intervals [x;, x;,,] and [x,,.,,x,,,], i€{0,.,/—2}, with
Ji<Ji+, either

(a) v,=0o0n [a x,,,] for every p=>k, and the sequence (j,)!Z}, | is
strictly increasing, or

(b) v,=0o0n [a, x,] for every p >k, the sequence ().
increasing, and C, =C, - Cj;.
Now, consider the partition {x;, |, .., x,} of the subinterval [x,, , 8].
For each interval [x,, x,,,] with s> 1 we have

IZh. | is strictly

24

ol0) = [ e (1) -, (1)

- j j dw(t) - dw, (1))

=:Ciy Lk

I [ o) dwy 0,40

v=i+2"¢%

=1%s

for all te[x,, x,,,]; if s=i+1, then let y,=1.
Analogously we compute

o) = [ [T (e, oy (4,) 90,1 0)

o

=:Civ1,P

forallp=zkon [x,, x,,,]
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Further distinctions are needed:

Case 1. C;,,,=0.

Proceeding as in Case 1 one gets C,, ; ,=0 for every p > k. Therefore,
v,=0o0n [x,,,, ] for every p>k.

Besides, C,, ;=0 implies

t k-1
J J‘ dwk(tk)“‘dwj,-+1(tji+l)=0

for all re[a, x,,,]. So we have v,=0 on [a, x,,,] for every p> k.
Thus, v,=0 on [«, B] for every p>k.

Case I1. C, ,,>0.
For each interval [x,, x,, ] with s>i+ 1 we have

Uy
’YS'UjS—1= ’
Ci+l,k
SO one gets
— Ci+1p
Up:C U
i+ 1,k

on the set [o, x,JU x4, B
If v,=0 on [a, x;,,] for every p >k, obviously

Ci+ 1,p .

v =
P C
i+ 1,k

Uy
on [a, B].

Now, let us assume v,=0 on [a, x;,] and C;=C,-C;. Then, for all
re[x;, x;,,] and p>=k we have

Xi
a

op ()= [ oo [ (1) w2, -, (1)

o

=:Cjp

v(x;) =0 implies directly C, ,=0, and therefore v,=v,=0 on [a, x,, ]
If v,(x;) >0, we especially have C,, > 0.
For all t€ [x;, x;, ] follows

C

v,,(t)=g’£~vk(t),
ik
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and, in particular, for x;, ,

e

Up(xi+l) =El’_p : vk(xi+l)
Lk

0

i+ Lp
== (),
Ci+1,k '

Since v, (x;) >0, we have v.(x;, ) >0, thus

ggz__cfﬂ,p.
Ci,k Ci+ 1,k
So we finally get
Ci+ 1,p
v,= -V
T Chk
on the interval [a, #]. Q.E.D.

This completes the proof of Theorem 1.

To prove Theorem 2 we need the following results:

LEMMA 8. Let ¢, deM and let 1,f,,...f,€ F(M) be a weak Markov
system with Property (E). If f (c. 41~ 1 =const, then fi(. 41~ s = const for
every fe U,,.

Proof. For n<1 the statement is trivial.

n—1=n:By Condition (El1) there exists a weak M™* system 1,
81> - 8n€ F(M) with lin{1, .., g;} =lin{l, ..., f;} for every je {1, .., n}.

By the induction hypothesis every ge U, _, is constant on [c, d] n M.

As U, is a weak Tchebycheff space, there exists ¢, de M with é<c<
d<d, such that 1,f,, .., f, are linearly independent on [, 0} M as well
as on (—o0,d]n M.

Now let 1, u,, .., u,e F(M) with Property (E2) on the set [, c0o)n M
and let 1, v, .., v, € F(M) with Property (E3) on (—o0,d]n M.

Let card(M N [¢, d]) = 2. Thus, for all (¢, t;)ed,(Mn[c, d])

1 1
- - =(=1)"" (va(t2) —v,(11))
(=17 Tyt (—1Y~ ole) 2 nln)
=(=1)"""(gu(t2) — &a(11))
=0
holds, because of 1, (—1)"'v, is a weak M* system on the set
(—0,d]nM, and v, =g, +g with gelin{1, g,, ... g,_, ).

640/68/1-2
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First let us assume that there exists a point fe M, 7 < ¢ with f,(7) 5/ (¢).
Applying Condition (E3) we get

1 1 1
(=172 | o) vi(ty) 0a(ty)

Un(;) Un(tl) U,,(tz)

1 1 1

=(-1)""2| v,(H~-v,(t;) O 0
v,(7) valty)  0,(22)
=(=1)""2(gu(t1) — g1(D)(&n(t2) — &4 (1))

=0.

So g,(¢,)—g.(f)> 0 implies g,(t,) = g,(¢,) for all (¢,, ;) € 45([¢, d] " M).
If f,=conston(—o0,d]n M, there exists a point fe M, i>d with
fi(d)#£1(D).
Using Condition (E2) we have

1
u,(ty)  u,(t;)
1 1 1
ui(t;) wi(t) wy(?) | =(g:(t) — &1 (D)gn(t2) — g4(1,)) 20,
u,(ty) u,(12) u,()

lzgn(tz)—g,,(n»o,

and g,(t,)—g,()<0. Thus, g,(t,)=g,(t;) holds for all (¢,,1,)€e
A4,{[¢, d] n M), and the statement readily follows. QE.D.

DEerINITION. Let £, ge F(M). Then g is called

(a) C-bounded on M, if g is bounded on [a,b] M for every
abeM,

(b) Lipschitz-bounded with respect to f, if for every a, be M there
exists K> 0, such that

lg(x)—gWI<K[f(x)—f(y)I  for x,yela,b]lnM.

A weak Markov system 1, f,, .., f,,€ F(M) is called Lipschitz-bounded
with respect to f; (C-bounded), if all functions f|, .., f, are Lipschitz-
bounded with respect to f; (C-bounded).

In [9] Zalik proved C-boundedness for weak Markov systems with the
Properties (E) and (I).
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LEMMA 9. Every normalized weak Markov system 1, f|, .., [, e F(M)
with Property (E) is C-bounded.

Proof. Obviously, it is sufficient to show C-boundedness for the
system 1, g, ..., g, € F(M), given by Condition (E1).

For n< 1 the statement is trivial.

n—1=>n: Let us suppose there are ¢, de M such that g, is unbounded
on the set [¢, d] n M. Therefore, the function g, e U, possesses at least one
pole pe[ec,d]n M.

So there is a sequence (7;)_, in the set [¢, d] N M converging to p with
lim, , . | g.(t,)| = . Without loss of generality let ¢, > ¢, for every k> 1.

Moreover, there is a point ¢e(— o0, c]n M, such that 1, g, .., g, are
linearly independent on the set [&, o) n M.

By the induction hypothesis we have u, =g, + g with ge U, _, which is
bounded on [¢, d]n M. Condition (E2) implies that the sets {u,} and
{1, u,} form weak M * systems on [, oo) n M. Thus, for each k> 1 there
follows

u, (1) =g, (1) +g(1,) =20
and
U (to) —u,(tx) = —ga(t;) + (u, (o) — g(1,)) 2 0.

Therefore, the unboundedness of the sequence (g,(7:));., leads to a
contradiction. Q.E.D.

LEMMA 10. Every normalized weak Markov system 1, fi, .., [,€ F(M)
with Property (E) is Lipschitz-bounded with respect to f,.

Proof. We are going to prove the statement for the weak M * system 1,
g1s - &€ F(M), given by Condition (E1).

If n< 1, the statement is obvious.

n—1=>n:Let (c,d)e 4,(M) be fixed. There are ¢, de M with é<c<
d<d and

dim Un|[5,O0)f‘\M=dim Un|(__oo,a]ﬁM=n+ 1.

Moreover, let us assume that 1, v,, ..., v, € F(M) fulfill Condition (E3) on
(—o0,d]n M.

Case 1. There are (%, 1,,5)ed;([c,d]nM) with g,(7,)<
g1(f,) < g,(f;). By Condition (E3) the sets

(Lo {L (=10}, {=v,, (=) "v,},and {10, (=1)" 2s,}
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form weak M* systems on (—o0,d]n M. Therefore v, and (—1)" ‘v,
are increasing on (— o, 3] NM, and

vi(x) v,(y) =(—1)"(v,(y) v (x)—v,(x)v,(y)) =0

A I !

for all (x, y)ed,(M(—o0,d]).
Now let (to,1;,1,)ed(Mn(—o0,d]) be fixed, such that g,(s,)<

g.(t,)<g(t,). Then
1 1 1
(=172 | oilte) 0i(tr) 04(2)
va(to) valty) v,(13)
= (= 1)" 72 [(va(t1) 01(t6) = valto) 01 (t1))
— 01 (12)(v, (1) —0,(20)) + v, (12)(v:1(1,) — v1(16))]
= (=1)"72 Lo, (1) = v4(t6))(0(t0) — v1(13))
+ (v, (12) — v, (1)) 0, (£1) — 0, (£0))]
=:D,=20.
By a simple calculation one shows

D,
(01(22) — v (£0))v1(2,) — v4(2p))

=(—1)""? (Un(tz)" v,(%o) Un(tl)_vn(t0)> >0

Ul(tz)—l’l(to)*U1(t1)—vx(to)

Let toe (— o0, d)n M be fixed. Then

n—2 UalX) —,(t0)

(p,O(X)2= (-1) g1(x)—g(t)

is well defined on the set M, := {re(ty, )N M|g (1) <g,(?)}.
As the functions v, and (—1)" ! v, are increasing on (—o0,d] M, Pr
is nonpositive, increasing, and bounded from above.
A similar computation of the determinant D, gives
D,
(v, (£2) — 01 (£6) v, (£2) — v4(20))
— (_1),,_2 <vn(t1)—_vn(t2)_vn(t0)—vn(t2)>20'

vi(t)—vi(t;) vi(t)—v4(ty)
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For fixed t, e (—o0, d] n M the function

n 2 Un(X) —0,(1)
L RN A
is increasing, nonpositive on M, := {tre(—o0, )N M| g, (1)<g,(t1)},
and therefore bounded from above.

Applying the induction hypothesis to g, =v, + g, ge U,_,, the
Lipschitz-boundedness of g, directly follows from the fact that ¢, and ¢,,
are bounded from above.

Case 2. If g([c,d]n M) consists of no more than two points, the
proof of the statement follows by Lemma 8. Q.E.D.

Throughout the following considerations on relative derivatives we can
assume:

1. I=(a, b) an open and bounded interval

2. 1, fi,..f,e C(I) a normalized weak Markov system.

These assumptions mean no loss of generality, because in [8] Zalik
proved the following embedding property of weak Markov systems:

Every C-bounded normalized weak M ™ system 1, fi, .. f,€ F(M) is
embeddable in a normalized weak M * system 1, g, ..., g, € C(I), where I
is an open-bounded interval, i.e., there is ce M and a strictly increasing
function h: M —1 with h(c)=c, such that g;(h(r))=f;(t) for every
j€{0,..,n} and every re M. Examining the proof one sees that if
1, fi, ... fo€ F(M) has Property (E) this also holds for 1, g4, ..., g,€ C(I)
(see Theorem 3 in [9]).

Examining the proof one sees that if 1, f, .., f,, € F(M) has Property (E)
this also holds for 1, g, ..., g,€ C(I) (see Theorem 3 in [9]).

DerFINITION. Let f, ge C(I), f/ monotone and nonconstant, and for
aellet

R,:= {xe(a,b) fle)#f(x)}, L,:= {xe(aa) f(x)#f(a)},
r, .= inf R,, l,:=supL,.

Moreover, let

In:={xel|lR,#J}, I :={xel|lL,#J}.
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Then the right and left relative derivatives of g with respect to f are defined
by

g(1)—gl(a)
li
Doglw)=lm ey €
and
gt)— g(a)
D_g(a)= ’1_51 TO—f el,.

The concept of relative differentiation in normalized weak Markov
spaces was introduced by Zielke in [11].

To prove Theorem 2 we need the following result, which may be of some
independent interest:

THEOREM 3. [f 1, f\, .. f,€ C(I) is a weak Markov system with Property
(E), then
D, fi,..D, f,eF(Ig)
and

D_f,..,D_f,eF(,)

are normalized weak Markov systems with Property (E).

LeMMA 11. Let 1, fi,..,f,€ C(I) be Lipschitz-bounded with respect to
fi1- Then for every ge U,
(@) D, g(t)eR for all telg;
() D_g(t)eR for all tel,.

The proof of Lemma 11 is completely analogous to the last part of the
proof of Lemma 11.3(a) in [10], and will therefore be omitted.

LemMmA 12. Let ge U, be Lipschitz-bounded with respect to f,. Then
(a) D, g(t)=0 for all te(c,d)c 1y implies g=const on (c, d);
(b) D_g(t)=0 for all te(c, d)c 1, implies g =const on (¢, d).
Proof. Without loss of generality we may assume that f; is increasing.
At first, let g be increasing, too.
Fix £¢>0 and let x,€(c, d). Because of D, g=0 on (¢, d) we have for
X>r,,
&(x) —g(xo)
S (x)=f(xo)

if the distance |x —r, | is sufficiently small.

0<
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The above estimate implies
&f (xo) —g(xo) <ef (x) —g(x).

By Riesz’s lemma (see, e.g, [3, p.319]), for each closed interval
[y, 8] < (c, d) there follows

ef () —g(y) <ef () —g(d),

and therefore

g8(d)—g(y)<e(f(8)—f (1))

Since ¢ >0 was arbitrary, g([y, 6])= [g(7), g(6)] is a degenerated interval,
thus g =const on (¢, d).

Now, let g € U, be arbitrary. By Lemma 3 there exists a natural number
k<n+1, and points p,, ..., p; With c=py< --- <p,=d, such that g is
monotone on each interval (p,, p,,,), je {0, .., k—1].

Thus, g=const on every interval (p;,p;.) Since D, g(p;})=0,
je{l,...,k—1}, we get g=const on (c, d).

The proof of part (b) is completely analogous to the proof of part (a)
and will be omitted. Q.E.D.

Proof of Theorem3. One easily sees from Lemmas 10 and 11 that
D, :U,— F(Iy) is a well-defined linear operator.

Clearly, kern D, contains U,, so D, U, is a subspace with
dim D, U, <n. Applying Lemma 12 it follows U, =kern D, , and therefore
dim D, U,=dim U,~dim(kern D, )=n. Proceeding as in [10, Lemma
11.3(b)] we conclude that D, f,, .., D, f,e F(Iz) is a normalized weak
Markov system.

By Condition (E1) there exists a normalized weak M™* system |,
g1» - &n€ C(I), such that for each je {1, .., n}

lin{l,..f;}=lin{l, .. g}

We show that D, g, .., D, g,€ F(I;) is a normalized weak M * system,
if f; is increasing; if f; is decreasing, then — D, g,,.., —D, g,e F(Ig)is a
normalized weak M * system:

Let £, be increasing, ke {1, .., n}, (t1, .., t,)€ 4,(Iz) and ¢ € D, U, with

o=aD, g, + @, a>0,¢geD, U,_,.
Suppose that

(=1 "p(t)<0 for i=1,., k
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Then there are functions geU, and geU,_, such that ¢=D_ g,
g=ug;+§ and $=D, &

Since (—1)*""¢(t;,)<0 for each ie {1, .., k}, there exists (u, ..., u;)€
A, (1) with u, € (t,, b) and u,€ (¢, t;, ) for any ie {1, .., k—1}, such that

glu;) —g(t)
Silw) = fi(t)

As f| is increasing we have
(=1} (g(u)—glt;)) <0 i=1,.,k

Consequently (7, u,, .., ty, #)€ 4 (I) contains a negatively oriented
oscillation of g =ag, + § € U,, in contradiction to Lemma 4.
If £, is decreasing, the proof is completely analogous.
Conditions (E2) and (E3) can be shown by analogous arguments.
Q.ED.

Note, that the oscillation Lemma 4 for normalized weak M * systems
was essential to prove Property (E) for the relative derivatives.

Proof of Theorem 2. Let 1, f|, .., f, be a weak Markov system with
Property (E).

For n<1 the statement is trivial.

n—1=n:By the embedding property of weak Markov systems I,
fi» S, i embeddable in a weak Markov system 1, z, .., z,e C(I),
I:= (a, b) open and bounded, i.c., there is ce M, and a strictly increasing
function h,: M —1I with h (c)=c, such that f;(x)=z(h,(x)) for every
je{l,..,n} and for every xe M; 1, z,, .., z, has Property (E).

From Theorem 3 follows that the left and right relative derivatives of 1,
Zy, ., Z, are nomalized weak Markov systems with Property (E).

Now let I and I, be defined as above. If there is ael, such that
zi=z,(a) on [a, b), let us define

(— 1)k i=1,..,k

b, :=inf{xel|z,(x)=2z,(a)}

and b, := b, if there is no such a.

If b, <b, we have sup I, =b, € l,.

By Lemma9, 1=D_z,,..,D_z,e F(Ig) is C-bounded. Thus there is a
normalized weak Markov system 1, ¢,,.., ¢,€ F(I) such that for each
Jje{2,..,n}

oil,=D .z

and, if b, <b
(P(x)=D+Zj(b1)a xe[by,b).
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Obviously, 1 = ¢y, .., ¢,€ F(I) has Property (E), and, using the induction
hypothesis, it is representable. So there is ¢ € 1, a strictly increasing function
hy: I— R with 4,(¢)=¢, and increasing functions w,, ..., w, € C(K(h,(I}))
with w,(¢)= --- =w,(&) =0, such that for every je {2, .., n} and for every
xel

h(x) o1
0= [ dwit) - dwley),
Now, let us define ¢; on the convex hull of 4,(7) by
1 41 .
b= [ dwt)dwa(t),  j=2,.0m

Without loss of generality we may choose ¢=c.

Let w, be defined by w,(x)=z,(h;'(x)), xeh,(I), and on the convex
hull of 4,(I) by linear interpolation in the same way as in the proof of
Theorem 3 in [11].

Setting ~A=h,oh,, then for xe M and je {1, .., n} we get

g() = [ e =] b(s)dwi(s)

an integral representation of 1, f,, ..., f,€ F(M).

Now, let 1, fi, .., f,€ F(M) be representable. Then there is a basis 1,
15 E.EF(M) of U, defined by (I). Obviously, it is sufficient to show
Property (E) for the corresponding system 1, vy, .., v,€ C(J) defined by
(I1).

By Lemma §, 1, v,, ..., v, € C(J) is a weak Markov system.

Proceeding by induction over n, we will prove

(1) 1,vy,..,v,e C(J) is a normalized weak M * system.

Proof of (1). For n=0 the statement is trivial.
n—1=n:Letvelin{l,..,v,}, say

n
v=) av;, withe,>0,0,eR for i=0,.,n—1
i=0

and let us suppose that v has a negatively oriented alternation of length
n+1in (¢, .., t,)ed,  (J), ie,

(=1)"7o(t;)<0, j=0,..,n

Then, for every je {1, .., n};

n

0> (—1)" (v(t)) - v(t;_y)) =(_1)n—j( Z a;0,(t;) — z": aivi(tjl)>'

i=1
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Clearly,

n

=200 =( T a0, ) (0= [ ) ()

i=1

with

u=o;+ Z ou;,
i=2
where u,, ..., u, are defined by (I2); note that, by the induction hypothesis,
1, u, ..., u, is a weak M ™ system. Therefore, for every je {1, .., n}, there
exists {;e [t;,_,, t;], such that

0> (—1y~ [’

/i —

u(s)dw,(s)= (‘1)'141. u(Cj)(wl(tj)_ Wl(tjfl)) .

—

20

But then, « has in ({,, .., {,)€4,(J) a negatively oriented alternation of
length #, in contradiction to Lemma 2.

It is easy to see that it is sufficient to prove Condition (E2) on
[¢, ©)nJ and Condition (E3) on (—o0,c]nJ.

(2) If 1, v, .., v, is linearly independent on [c, ) J, and (k(/))7",
and arbitrarily fixed subsequence of {0, ..., n}, then v, ), ..., () is @ weak
MY system on [¢, o) J.

Proof of (2). We distinguish two subcases.

Case 1. k(0)=0.
For m =0 the statement is obvious.
m—1=m:Then, for all 1€ [¢, ©)NJ,

t
Uk(l)(t)zj‘ avi1\(Tiery)

and, for all ie {2,..,m},

b omti(1) th(iy—1
vk(i)(t)='f f f AWy (L) Wiy o1 By + 1) @0y (B )-
C [ C

On the set [¢, w0) N J, vy, is increasing and nonnegative. Now, proceeding
as in the proof of Lemma 13.2 in [10], and following the arguments used
in (1) one gets: 1, vyy), -y Uggm) i @ weak M * system on [c, co)nJ.

If k(0) > 0, these arguments are not applicable. But in that case we have
v(c) =0 for every velin{vi o), s Vigm) }-



INTEGRAL REPRESENTATION 23

Case 2. k(0)>0.

If m=0, then the statement follows by the fact that v, is increasing on
[c, o]NJ.

m—1=>m:Let us suppose that there are velin{v,q,, ..., g } and
(05 cvos tp 1 VE A, 2([€, 20) N J), such that

(=)™ (1) <0, j=0,.,m+1.

v(c)=0 implies ¢ < ¢,. Setting ¢_, := ¢, it follows that

(— 1)m+1*ff’ B(S) dvpoy(s) <0,  j=0,..,m+1

fi—1

with 5 €lin{&;,, -, Dx(m) }» Where
Troy(1)=1

4 k(i) —1
By (1) =J’ - '[ Wiy (tiiy) - Doy + 1 B0y + 1)
C [

forie{l, .., m}.

But then, proceeding completely analogously to the proof of
[10, Lemma 13.2] # would have a strong alternation of length m+2 in
[¢, 0} J, a contradiction.

Moreover, using the fact that v(c)=0 for every velin{vyq); -y Vk(m) J»
and, following the arguments of (1) one gets: 1, 5y, ..., Dx(m) is @ weak M+
system on the set [¢, )N J.

The proof of Condition (E3) is completely analogous to the proof of
Condition (E2). Q.E.D.
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