Integral Representation of Normalized Weak Markov Systems*

Friedhelm Schwenker
University of Düsseldorf,
C.u.O. Vogt Institut für Hirnforschung, Universitätsstraße 1, 4000 Düsseldorf, Germany
Communicated by Oved Shisha
Received October 30, 1989; revised September 18, 1990

A necessary and sufficient condition for the existence of an integral representation of weak Markov systems is given. This theorem generalizes results of Zalik and Zielke. The proof is based on the relative differentiation method of weak Markov systems introduced by Zielke, and on new alternation and oscillation properties of weak M^{+}systems, which may be of some independent interest. © 1992 Academic Pres, Inc.

Terminology and Results

For a nonempty subset of the real line, $A \subset \mathbb{R}$, let us denote its convex hull by $K(A)$. Let $M \subset \mathbb{R}$ with card $M \geqslant n+2, c \in M$, and $h: M \rightarrow \mathbb{R}$ strictly increasing with $h(c)=c$. Moreover, let $J:=K(h(M))$, and let $w_{1}, \ldots, w_{n} \in$ $C(J)$ be increasing functions with $w_{j}(c)=0$ for every $j \in\{1, \ldots, n\}$.

Define, for $x \in M$,

$$
\begin{align*}
& g_{1}(x)=\int_{c}^{h(x)} d w_{1}\left(t_{1}\right) \\
& g_{2}(x)=\int_{c}^{h(x)} \int_{c}^{t_{1}} d w_{2}\left(t_{2}\right) d w_{1}\left(t_{1}\right) \tag{I}\\
& \vdots \\
& g_{n}(x)=\int_{c}^{h(x)} \int_{c}^{t_{1}} \cdots \int_{c}^{t_{n-1}} d w_{n}\left(t_{n}\right) \cdots d w_{2}\left(t_{2}\right) d w_{1}\left(t_{1}\right)
\end{align*}
$$

[^0]and for $t \in J$,
\[

$$
\begin{align*}
v_{1}(t) & =\int_{c}^{t} d w_{1}\left(t_{1}\right) \\
\vdots & \tag{I1}\\
v_{n}(t) & =\int_{c}^{t} \int_{c}^{t_{1}} \cdots \int_{c}^{t_{n-1}} d w_{n}\left(t_{n}\right) \cdots d w_{2}\left(t_{2}\right) d w_{1}\left(t_{1}\right) \\
u_{2}(t) & =\int_{c}^{t} d w_{2}\left(t_{2}\right) \\
\vdots & \tag{I2}\\
u_{n}(t) & =\int_{c}^{t} \int_{c}^{t_{2}} \cdots \int_{c}^{t_{n-1}} d w_{n}\left(t_{n}\right) \cdots d w_{3}\left(t_{3}\right) d w_{2}\left(t_{2}\right)
\end{align*}
$$
\]

Moreover, let $F(M):=\{f: M \rightarrow \mathbb{R}\}, f_{0}, \ldots, f_{n} \in F(M), \Delta_{k}(M):=\left\{x \in M^{k}:\right.$ $\left.x_{1}<\cdots<x_{k}\right\}$ for $k \in \mathbb{N}$, and $U_{i}:=\operatorname{lin}\left\{f_{0}, \ldots, f_{i}\right\}$ for $i \in\{0, \ldots, n\}$.
Provided that $f_{0}, \ldots, f_{n} \in F(M)$ are linearly independent and $\operatorname{det}\left(f_{i}\left(t_{j}\right)\right)_{0 \leqslant i, j \leqslant n}$ has a weakly constant sign for all $\left(t_{0}, \ldots, t_{n}\right) \in \Delta_{n+1}(M)$, f_{0}, \ldots, f_{n} is called a weak Tchebycheff system on M; we say $f_{0}, \ldots, f_{n} \in F(M)$ is a weak T^{+}system, if the sign is nonnegative. $f_{0}, \ldots, f_{n} \in F(M)$ is called a weak Markov system (weak M^{+}system) on M, if f_{0}, \ldots, f_{j} is a weak Tchebycheff system (weak T^{+}system) for every $j \in\{0, \ldots, n\}$.

If, in addition, $f_{0} \equiv 1$, a weak Markov system f_{0}, \ldots, f_{n} (weak M^{+}system) is called normalized.

A normalized weak Markov system $1, f_{1}, \ldots, f_{n} \in F(M)$ is called representable, if there are functions $1, g_{1}, \ldots, g_{n} \in F(M)$ defined by (I) with $\operatorname{lin}\left\{1, \ldots, g_{j}\right\}=\operatorname{lin}\left\{1, \ldots, f_{j}\right\}$ for every $j \in\{1, \ldots, n\}$.

Definition. Let $f \in F(M)$. Points $\left(x_{1}, \ldots, x_{k}\right) \in \Delta_{k}(M)$ are called a strong alternation of length k of f, if there exists $\tau \in\{-1,1\}$, such that

$$
\tau(-1)^{k-i} f\left(x_{i}\right)>0 \quad \text { for } \quad i=1, \ldots, k
$$

A strong alternation is called positively oriented, if and only if $\tau=1$.
The following lemma is [10, Lemma 4.1]
Lemma 1. Let $f_{0}, \ldots, f_{n} \in F(M)$ be linearly independent. Then the following two statements are equivalent:
(a) f_{0}, \ldots, f_{n} is a weak Tchebycheff system;
(b) No $f \in U_{n}$ has a strong alternation of length $n+2$.

Subsequently, we shall derive some new alternation and oscillation proper-
ties of weak M^{+}systems (Lemmas 2 and 4) and use them to obtain new properties of representable weak Markov systems.

Lemma 2. Let $f_{0}, \ldots, f_{n} \in F(M)$ be a weak Markov system. Then the following statements are equivalent:
(a) f_{0}, \ldots, f_{n} is a weak M^{+}systems;
(b) $f_{0} \geqslant 0$ and for each function $f=\alpha f_{n}+g, g \in U_{n-1}, \alpha \neq 0$, with a strong alternation of length $n+1$ in M, the alternation is positively oriented, if and only if $\alpha>0$.

Definition. Let $k \geqslant 2$. An $f \in F(M)$ has a strong oscillation of length k if there exists $\left(x_{1}, \ldots, x_{k}\right) \in A_{k}(M)$ and $\tau \in\{-1,1\}$, such that

$$
\tau(-1)^{k-i}\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)>0 \quad \text { for } \quad i=2, \ldots, k .
$$

The strong oscillation is called positively oriented, if and only if $\tau=1$.
The following lemma was developed in [11, 14]. In [12] an elementary proof, without use of the Gaußkernel approximation of weak Markov systems by smooth Markov systems, was given.

Lemma 3. Let $1, f_{1}, \ldots, f_{n} \in F(M)$ be a normalized weak Markov system. Then no $f \in U_{n}$ has a strong oscillation of length $n+2$.

Lemma 4. Let $1, f_{1}, \ldots, f_{n} \in F(M)$ be a normalized weak M^{+}system. If the function $f \in U_{n}$ with $f=\alpha f_{n}+g, g \in U_{n-1}, \alpha \neq 0$, has a strong oscillation of length $n+1$, then the oscillation is positively oriented, if and only if $\alpha>0$.

Definition. A normalized weak Markov system $1, f_{1}, \ldots, f_{n} \in F(M)$ is called weakly nondegenerate, if for every $a, b \in M$ and for every $j \in\{0, \ldots, n-1\}$

$$
f_{j \mid(a, b) \cap M} \in U_{j-1} \quad \Rightarrow \quad f_{j+1 \|(a, b) \cap M} \in U_{j-1} .
$$

Our definition of weak nondegeneracy is different from the definition introduced by Zalik in [9].

We will prove
Theorem 1. Every representable weak Markov system $1, g_{1}, \ldots, g_{n} \in$ $F(M)$ is weakly nondegenerate.

Definition. A normalized weak Markov system 1, $f_{1}, \ldots, f_{n} \in F(M)$ has Property (E), if the following conditions are satisfied:
(E1) There exists a normalized weak M^{+}system $1, g_{1}, \ldots, g_{n} \in F(M)$ such that $\operatorname{lin}\left\{1, \ldots, g_{j}\right\}=\operatorname{lin}\left\{1, \ldots, f_{j}\right\}$ for every $j \in\{1, \ldots, n\}$.
(E2) For every point $c \in K(M)$ with $\operatorname{dim} U_{n \mid[c, \infty) \cap M}=n+1$, there exists $1, u_{1}, \ldots, u_{n} \in F(M)$ with $u_{j}-g_{j} \in \operatorname{lin}\left\{1, \ldots, g_{j-1}\right\}$ for every $j \in\{1, \ldots, n\}$, such that for any ordered subsequence $(k(l))_{l=0}^{m}$ of $\{0, \ldots, n\}$ the functions $u_{k(0)}, \ldots, u_{k(m)}$ form a weak M^{+}system on $[c, \infty) \cap M$.
(E3) For every point $c \in K(M)$ with $\operatorname{dim} U_{n \mid(-\infty, c] \cap M}=n+1$, there exists $1, v_{1}, \ldots, v_{n} \in F(M)$ with $v_{j}-g_{j} \in \operatorname{lin}\left\{1, \ldots, g_{j-1}\right\}$ for every $j \in\{1, \ldots, n\}$, such that for any ordered subsequence $(k(l))_{l=0}^{m}$ of $\{0, \ldots, n\}$ the functions $(-1)^{k(0)-0} v_{k(0)}, \ldots,(-1)^{k(m)-m} v_{k(m)}$ form a weak M^{+}system on $(-\infty, c] \cap M$.

In [9] Zalik introduced Property (E) for weak Markov systems, and he gave an integral representation for weak normalized Markov systems with the conditions of Property (E) and the following Condition (I) (see Theorem 3 in [9]).

Condition (I). For every real number c, the weak Markov system is linearly independent on at least one of the sets $(c, \infty) \cap M$ and $(-\infty, c) \cap M$.

A representable weak Markov system does not fulfill Condition (I) in general as the following example shows:

Let $M=\{-1,0,1\}$ and let the functions $f_{0}, f_{1}, f_{2} \in F(M)$ defined by $f_{i}(t)=t^{i}, i \in\{0,1,2\}$.

Zielke has shown in [11] that every nondegenerate normalized weak Markov system is representable. A weak Markov system is called nondegenerate, if for every $c \in M$ the functions are linearly independent on both of the sets $(c, \infty) \cap M$ and $(-\infty, c) \cap M$.
Our main result is
Theorem 2. A normalized weak Markov system $1, f_{1}, \ldots, f_{n} \in F(M)$ is representable, if and only if it has Property (E).

Proofs of the Results

Proof of Lemma 2. We proceed by induction over n.
(a) $\Rightarrow(\mathrm{b})$: For $n=0$ the statement is trivial.
$n-1 \Rightarrow n$: Let $\left(t_{0}, \ldots, t_{n}\right) \in \Delta_{n+1}(M)$ be a negatively oriented alternation of length $n+1$ of $f=\alpha f_{n}+g, \alpha>0$ and $g \in U_{n-1}$. An easy calculation shows

$$
\operatorname{det}\binom{f_{0} \cdots f_{n}}{t_{0} \cdots t_{n}}=\frac{1}{\alpha} \sum_{j=0}^{n} f\left(t_{j}\right)(-1)^{n-j} \operatorname{det}\left(\begin{array}{ll}
f_{0} \cdots & \cdots f_{n-1} \\
t_{0} \cdots t_{j-1} & t_{j+1} \cdots t_{n}
\end{array}\right) \leqslant 0 .
$$

Proceeding as in Lemma $4.1(\mathrm{~b}) \Rightarrow$ (a) Subcase 2 in [10], we get

$$
\operatorname{dim} U_{n-1 \mid\left\{0, \ldots, s_{n}\right\}}=n .
$$

So there is $j_{0} \in\{0, \ldots, n\}$ with

$$
\operatorname{det}\left(\begin{array}{lll}
f_{0} \cdots & \cdots f_{n-1} \\
t_{0} \cdots t_{j_{0}-1} t_{j_{0}+1} & \cdots & t_{n}
\end{array}\right)>0 .
$$

Thus

$$
\operatorname{det}\binom{f_{0} \cdots f_{n}}{t_{0} \cdots t_{n}}<0
$$

in contradiction to the fact that f_{0}, \ldots, f_{n} is a weak M^{+}system.
If $\alpha<0$ and $\left(t_{0}, \ldots, t_{n}\right) \in \Delta_{n+1}(M)$ is positively oriented, then the statement follows completely analogously.
(b) \Rightarrow (a): The case $n=0$ is trivial.
$n-1 \Rightarrow n$: By induction hypothesis f_{0}, \ldots, f_{n-1} is a weak M^{+}system.
Suppose there exists $\left(x_{0}, \ldots, x_{n}\right) \in \Delta_{n+1}(M)$ such that

$$
\operatorname{det}\binom{f_{0} \cdots f_{n}}{x_{0} \cdots x_{n}}<0 .
$$

Thus,

$$
\operatorname{det}\binom{f_{0} \cdots f_{n}}{t_{0} \cdots t_{n}} \leqslant 0
$$

for every $\left(t_{0}, \ldots, t_{n}\right) \in \Delta_{n+1}(M)$.
Since $\operatorname{dim} U_{n \mid\left\{x_{0}, \ldots, x_{n}\right\}}=n+1$, there is exactly one $f \in U_{n}$ with

$$
f\left(x_{j}\right)=(-1)^{n-j}, \quad j=0, \ldots, n
$$

Then we have $f=\alpha f_{n}+g, g \in U_{n-1}, \alpha>0$, and

$$
\begin{aligned}
0>\operatorname{det}\binom{f_{0} \cdots f_{n}}{x_{0} \cdots x_{n}} & =\frac{1}{\alpha} \sum_{j=0}^{n} f\left(x_{j}\right)(-1)^{n-j} \operatorname{det}\left(\begin{array}{lll}
f_{0} \cdots & \cdots f_{n-1} \\
x_{0} \cdots x_{j-1} & x_{j+1} \cdots & x_{n}
\end{array}\right) \\
& =\frac{1}{\alpha} \sum_{j=0}^{n} \operatorname{det}\left(\begin{array}{ll}
f_{0} \cdots & \cdots f_{n-1} \\
x_{0} \cdots x_{j-1} & x_{j+1} \cdots
\end{array}\right) .
\end{aligned}
$$

By the induction hypothesis

$$
\operatorname{det}\left(\begin{array}{lll}
f_{0} \cdots & \cdots f_{n-1} \\
x_{0} \cdots x_{j-1} & x_{j+1} & \cdots \\
x_{n}
\end{array}\right) \geqslant 0, \quad j=0, \ldots, n,
$$

in contradiction to

$$
\operatorname{det}\binom{f_{0} \cdots f_{n}}{x_{0} \cdots x_{n}}<0
$$

Proof of Lemma 4. Let $1, f_{1}, \ldots, f_{n}$ be a normalized weak M^{+}system.
If $n=1$, then the statement is trivial.
$n-1 \Rightarrow n$: Let $f \in U_{n}$ with $f=\alpha f_{n}+g, \quad g \in U_{n-1}, \quad \alpha>0, \quad$ and let $\left(t_{0}, \ldots, t_{n}\right) \in A_{n+1}(M)$ be a negatively oriented oscillation of length $n+1$, i.e.,

$$
(-1)^{n-j}\left(f\left(t_{j}\right)-f\left(t_{j-1}\right)\right)<0, \quad j=1, \ldots, n
$$

Proceeding as in the proof of Lemma $4.1(\mathrm{~b}) \Rightarrow(\mathrm{a})$ Subcase 2 in [10], we may assume that the restriction of U_{n-1} to $\left\{t_{0}, \ldots, t_{n}\right\} \subset M$ is a vector space of dimension n.

Case 1. $\operatorname{dim} U_{n-1 \mid\left\{t_{0}, \ldots, t_{n-1}\right\}}=n$.
For each $\varepsilon>0$ there is a function $h_{\varepsilon} \in U_{n-1}$ such that

$$
h_{\varepsilon}\left(t_{j}\right)=f\left(t_{j}\right)+\varepsilon(-1)^{n-j}, \quad j=0, \ldots, n-1
$$

Now fix an ε with $0<\varepsilon<\frac{1}{2} \max \left\{\left|f\left(t_{j}\right)-f\left(t_{j-1}\right)\right| \mid j=1, \ldots, n\right\}$. By the induction hypothesis it follows that $h_{\varepsilon}\left(t_{n}\right) \geqslant h_{\varepsilon}\left(t_{n-1}\right)$. Taking into consideration that

$$
f\left(t_{n}\right)-h_{\varepsilon}\left(t_{n}\right) \leqslant f\left(t_{n}\right)-f\left(t_{n-1}\right)+\varepsilon<0
$$

and $\left(f-h_{\varepsilon}\right)\left(t_{j}\right)=\varepsilon(-1)^{n-1-j}$ for each $j \in\{0, \ldots, n-1\}$, we see that $\left(f-h_{\varepsilon}\right) \in U_{n}$ has a negatively oriented strong alternation of length $n+1$ in $\left(t_{0}, \ldots, t_{n}\right) \in \Delta_{n+1}(M)$, in contradiction to Lemma 2.

Case 2. $\operatorname{dim} U_{n-1 \mid\left\{t_{0}, \ldots, t_{n-1}\right\}}=n-1$.
We distinguish the following two subcases:
Subcase 2a. $\quad \operatorname{dim} U_{n-1 \mid\left\{t_{1}, \ldots, t_{n}\right\}}=n$.
For every $\varepsilon>0$ there is $h_{\varepsilon} \in U_{n-1}$ with

$$
h_{\varepsilon}\left(t_{j}\right)=f\left(t_{j}\right)+\varepsilon(-1)^{n-j}, \quad j=1, \ldots, n
$$

Now, let us fix $\varepsilon>0$ sufficiently small. By the induction hypothesis we have $(-1)^{n-1} h_{\varepsilon}\left(t_{0}\right) \leqslant(-1)^{n-1} h_{\varepsilon}\left(t_{1}\right)$, and

$$
\begin{aligned}
(-1)^{n}\left(f-h_{\varepsilon}\right)\left(t_{0}\right) & =(-1)^{n} f\left(t_{0}\right)+(-1)^{n-1} h_{\varepsilon}\left(t_{0}\right) \\
& \leqslant(-1)^{n} f\left(t_{0}\right)+(-1)^{n-1} h_{\varepsilon}\left(t_{1}\right) \\
& =(-1)^{n-1}\left(f\left(t_{1}\right)-f\left(t_{0}\right)\right)+\varepsilon
\end{aligned}
$$

But then $\left(f-h_{\varepsilon}\right) \in U_{n}$ has a negatively oriented alternation in $\left(t_{0}, \ldots, t_{n}\right) \in$ $\Delta_{n+1}(M)$, in contradiction to Lemma 2.

Subcase 2b. $\quad \operatorname{dim} U_{n-1 \mid\left\{t_{0}, \ldots, t_{n-1}\right\}}=\operatorname{dim} U_{n-1 \mid\left\{t, \ldots, t_{n}\right\}}=n-1$.
For $h \in F(M)$, let us denote by \hat{h} the restriction of h to $\left\{t_{1}, \ldots, t_{n}\right\}$. Since $\hat{f}_{0}, \ldots, \hat{f}_{n-1}$ are linearly dependent, there is a minimal $j \in\{0, \ldots, n-1\}$ with $\hat{f}_{j} \in\left\{\hat{f}_{0}, \ldots, \hat{f}_{j-1}\right\}$, say

$$
\hat{f}_{j}=\sum_{i=0}^{j-1} \alpha_{i} \hat{f}_{i}, \quad \alpha_{i} \in \mathbb{R} .
$$

Then, proceeding analogously to the proof of Lemma 1 Subcase 1a in [12] we get that $\hat{f}_{0}, \ldots, \hat{f}_{j-1}, \hat{f}_{j+1}, \ldots, \hat{f}_{n}$ is a weak M^{+}system. Now, applying the induction hypothesis, the strong oscillation $\left(t_{1}, \ldots, t_{n}\right)$ of \hat{f} is positively oriented, and we arrive at a contradiction.

The proof for $\alpha<0$, and $\left(t_{0}, \ldots, t_{n}\right) \in \Delta_{n+1}(M)$ a positively oriented oscillation, is completely analogous.
Q.E.D.

Following the argument used in the proof of Lemma 13.2 in [10] one gets:

Lemma 5. Let $1, g_{1}, \ldots, g_{n} \in F(M)$ be defined by (I). Then no $g \in \operatorname{lin}\left\{1, g_{1}, \ldots, g_{n}\right\}$ has a strong alternation of length $n+2$.

For the proof of Theorem 1, the following two lemmas are essential.
Lemma 6. Let v_{1}, \ldots, v_{n} be defined by (I1), $k \in\{1, \ldots, n\},[\alpha, \beta] \subset J$, and $v_{k \mid[\alpha, \beta]} \in \operatorname{lin}\left\{1, v_{1}, \ldots, v_{k-1}\right\}$. Then there is a natural number $l \in \mathbb{N}$ and a partition $\left\{x_{0}, \ldots, x_{l+1}\right\}$ of $[\alpha, \beta]$, such that for every $i \in\{0, \ldots, l\}$ there is $j_{i} \in\{1, \ldots, k\}$ with $w_{j_{i}} \equiv$ const on $\left[x_{i}, x_{i+1}\right]$.

Proof. Without loss of generality, we may assume $c=\alpha$. It is easy to see that replacing $c \in M$ by $\tilde{c} \in M$ the integral representation $1, v_{1}, \ldots, v_{n}$ leads to an integral representation $1, \tilde{v}_{1}, \ldots, \tilde{v}_{n}$, such that for every $i \in\{1, \ldots, n\}$: $\operatorname{lin}\left\{1, v_{1}, \ldots, v_{i}\right\}=\operatorname{lin}\left\{1, \tilde{v}_{1}, \ldots, \tilde{v}_{i}\right\}$ and $v_{i}-\tilde{v}_{i} \in \operatorname{lin}\left\{1, \ldots, v_{i-1}\right\}$.

We proceed by induction over n.
$n=1$: If $v_{1} \equiv 0$ on $[\alpha, \beta]$, then $w_{1} \equiv 0$ on $[\alpha, \beta]$.
$n-1 \Rightarrow n$: Let $v_{n \mid[\alpha, \beta]} \in \operatorname{lin}\left\{1, v_{1}, \ldots, v_{n-1}\right\}$, then there is $v \in$ $\operatorname{lin}\left\{1, v_{1}, \ldots, v_{n-1}\right\}$ with $v \equiv 0$ on $[\alpha, \beta]$ and $u \in \operatorname{lin}\left\{1, u_{2}, \ldots, u_{n-1}\right\} \backslash\{0\}$, such that $v(t)=\int_{c}^{t} u\left(t_{1}\right) d w_{1}\left(t_{1}\right), t \in J$ where u_{2}, \ldots, u_{n} are defined by (I2).

By Lemma 5 each alternation of u is of finite length, thus there is $x_{1}>c=\alpha$, such that either $u \equiv 0$ on $\left(c, x_{1}\right)$ or $u(s) \neq 0$ for all $s \in\left(c, x_{1}\right)$; we may choose the interval (c, x_{1}) maximal.

Case 1. $u(x) \neq 0$ for every $x \in\left(c, x_{1}\right)$.
Without loss of generality, let $u(x)>0$ on $\left(c, x_{1}\right)$. Now, suppose $w_{1}(c)<w_{1}\left(t_{0}\right)$ for some $t_{0} \in\left(c, x_{1}\right)$. Then there exists $\varepsilon>0$, such that $w_{1}(c)<w_{1}(t)$ for every $t \in J$ with $\left|t-t_{0}\right|<\varepsilon$. But this implies $v(t)>0$ for every $t \in\left[t_{0}, x_{1}\right]$, in contradiction to the fact that $w_{1} \equiv$ const on $\left(c, x_{1}\right)$.

Case 2. $u \equiv 0$ on $\left(c, x_{1}\right)$.
Clearly, $u \equiv 0$ on $\left[c, x_{1}\right.$]. By induction hypothesis there is a natural number l_{1} and a partition $\left\{y_{0}, \ldots, y_{l_{1}+1}\right\}$ of $\left[c, x_{1}\right]$, such that for each $i_{1} \in\left\{0, \ldots, l_{1}\right\}$ there exists $j_{i_{1}} \in\{2, \ldots, k\}$ with $w_{j_{i_{1}}} \equiv$ const on $\left[y_{i_{1}}, y_{i_{1}+1}\right]$.

We get $\int_{c}^{x_{1}} u\left(t_{1}\right) d w_{1}\left(t_{1}\right)=0$ in both cases. Therefore, $v(t)=$ $\int_{x_{1}}^{t} u\left(t_{1}\right) d w\left(t_{1}\right)$ on J. Since u has only finitely many separated zeros, repeated application of the argument used above yields a partition of $[\alpha, \beta]$.
Q.E.D.

Lemma 7. Let v_{1}, \ldots, v_{n} be defined by (I1), $k \in\{1, \ldots, n\},[\alpha, \beta] \subset J$, and $v_{k \mid[\alpha, \beta]} \in \operatorname{lin}\left\{1, \ldots, v_{k-1}\right\}$. Then for every $p \in\{k+1, \ldots, n\}$ there exists $\alpha_{p} \in \mathbb{R}$, such that

$$
v_{p \mid[\alpha, \beta]}=\alpha_{p} v_{k \mid[\alpha, \beta]} .
$$

Proof. By Lemma 6 there exists $l \in \mathbb{N}$ and a partition $\left\{x_{0}, \ldots, x_{l}\right\}$ of $[\alpha, \beta]$, such that for every $i \in\{0, \ldots, l-1\}$ there is $j_{i} \in\{1, \ldots, k\}$ with $w_{j_{i}} \equiv$ const on $\left[x_{i}, x_{i+1}\right]$.

Without loss of generality we may assume:
(A) $\alpha=c$;
(B) for every $i \in\{0, \ldots, l-1\}$ and every $j \in\left\{j_{i}+1, \ldots, k\right\}, w_{j}$ is nonconstant on $\left[x_{i}, x_{i+1}\right]$.
If $l=1$, we have $v_{p} \equiv 0$ on $[\alpha, \beta]=\left[x_{0}, x_{1}\right]$ for all $p \in\left\{j_{0}, \ldots, n\right\}$.
Now, let $l>1$, and let $\left[x_{i}, x_{i+1}\right]$ and $\left[x_{i+1}, x_{i+2}\right]$ be arbitrarily fixed, so $w_{j_{i}} \equiv$ const on $\left[x_{i}, x_{i+1}\right]$ and $w_{j_{i+1}} \equiv$ const on $\left[x_{i+1}, x_{i+2}\right]$. For brevity let $q:=j_{i}$ and $r:=j_{i+1}$. Now, let us assume $q<r$. Then, for all $t \in\left[x_{i}, x_{i+1}\right]$ we have

$$
\begin{aligned}
v_{k}(t) & =\int_{\alpha}^{t} \cdots \int_{\alpha}^{t_{q-1}} \cdots \int_{\alpha}^{t_{k-1}} d w_{k}\left(t_{k}\right) \cdots d w_{q}\left(t_{q}\right) \cdots d w_{1}\left(t_{1}\right) \\
& =\int_{\alpha}^{x_{i}} \cdots \int_{\alpha}^{t_{k}-1} d w_{k}\left(t_{k}\right) \cdots d w_{q}\left(t_{q}\right) \cdot v_{q-1}(t)
\end{aligned}
$$

and

$$
v_{k}(t)=\int_{\alpha}^{x_{i+1}} \cdots \int_{\alpha}^{t_{k-1}} d w_{k}\left(t_{k}\right) \cdots d w_{r}\left(t_{r}\right) \cdot v_{r-1}(t)
$$

for all $t \in\left[x_{i+1}, x_{i+2}\right]$.

Since $r>q$, it follows that

$$
v_{r-1}(t)=\int_{\alpha}^{x_{i}} \cdots \int_{\alpha}^{t_{r-2}} d w_{r-1}\left(t_{r-1}\right) \cdots d w_{q}\left(t_{q}\right) \cdot v_{q-1}(t)
$$

for all $t \in\left[x_{i}, x_{i+1}\right]$, especially at the point x_{i+1} :

$$
v_{r-1}\left(x_{i+1}\right)=\int_{\alpha}^{x_{i}} \cdots \int_{\alpha}^{t_{r-2}} d w_{r-1}\left(t_{r-1}\right) \cdots d w_{q}\left(t_{q}\right) \cdot v_{q-1}\left(x_{i+1}\right) .
$$

This implies

$$
\begin{aligned}
v_{k}\left(x_{i+1}\right)= & \int_{\alpha}^{x_{i}} \cdots \int_{\alpha}^{t_{k-1}} d w_{k}\left(t_{k}\right) \cdots d w_{q}\left(t_{q}\right) \cdot v_{q-1}\left(x_{i+1}\right) \\
= & \int_{\alpha}^{x_{i+1}} \cdots \int_{\alpha}^{t_{k-1}} d w_{k}\left(t_{k}\right) \cdots d w_{r}\left(t_{r}\right) \cdot v_{r-1}\left(x_{i+1}\right) \\
= & \int_{\alpha}^{x_{i+1}} \cdots \int_{\alpha}^{t_{k-1}} d w_{k}\left(t_{k}\right) \cdots d w_{r}\left(t_{r}\right) \\
& \cdot \int_{\alpha}^{x_{i}} \cdots \int_{\alpha}^{t_{r-2}} d w_{r-1}\left(t_{r-1}\right) \cdots d w_{q}\left(t_{q}\right) \cdot v_{q-1}\left(x_{i+1}\right) .
\end{aligned}
$$

We distinguish several cases and subcases:
Case 1.

$$
v_{q-1}\left(x_{i+1}\right)=0 .
$$

Then

$$
v_{q-1}(t)=\int_{\alpha}^{t} \cdots \int_{\alpha}^{t_{q-2}} d w_{q-1}\left(t_{q-1}\right) \cdots d w_{1}\left(t_{1}\right)=0
$$

for all $t \in\left[\alpha, x_{i+1}\right]$, because v_{q-1} is increasing on $[\alpha, \infty) \cap J$ and $v_{q-1}(\alpha)=0$.

This implies

$$
\begin{aligned}
0 \leqslant v_{p}(t)= & \int_{\alpha}^{t} \cdots \int_{\alpha}^{t_{q-2}}\left(\int_{\alpha}^{t_{q-1}} \cdots \int_{\alpha}^{t_{p-1}} d w_{p}\left(t_{p}\right) \cdots d w_{q}\left(t_{q}\right)\right) \\
& \times d w_{q-1}\left(t_{q-1}\right) \cdots d w_{1}\left(t_{1}\right) \\
\leqslant & \int_{\alpha}^{x_{i}} \cdots \int_{\alpha}^{t_{p-1}} d w_{p}\left(t_{p}\right) \cdots d w_{q}\left(t_{q}\right) \cdot v_{q-1}(t)=0
\end{aligned}
$$

for every $p>q-1$ and all $t \in\left[\alpha, x_{i+1}\right]$, so $v_{p} \equiv 0$ on $\left[\alpha, x_{i+1}\right]$ for $p \geqslant q$.

Case 2.
Now we assume

$$
\overbrace{=: C_{1}}^{\int_{\alpha}^{x_{i}} \cdots \int_{\alpha}^{t_{k-1}} d w_{k}\left(t_{k}\right) \cdots d w_{q}\left(t_{q}\right)}=\overbrace{=: C_{2}}^{\int_{\alpha}^{x_{i+1}} \cdots \int_{\alpha}^{t_{k-1}} d w_{k}\left(t_{k}\right) \cdots d w_{r}\left(t_{r}\right)}
$$

For C_{1} we have the following estimate:

$$
\begin{aligned}
0 \leqslant C_{1}= & \int_{\alpha}^{x_{i}} \cdots \int_{\alpha}^{t_{r-2}}\left(\int_{\alpha}^{t_{r-1}} \cdots \int_{\alpha}^{t_{r-1}} d w_{k}\left(t_{k}\right) \cdots d w_{r}\left(t_{r}\right)\right) \\
& \times \underbrace{\int_{\alpha}^{x_{i}} \cdots w_{r-1}\left(t_{r-1}\right) \cdots d w_{q}\left(t_{q}\right)}_{=: Z_{2}} \\
& \cdot \underbrace{\int_{\alpha}^{x_{k}} \cdots \int_{\alpha}^{t_{r-2}} d w_{k}\left(t_{k}\right) \cdots d w_{r}\left(t_{r}\right)}_{=c_{3}}
\end{aligned}
$$

Since $C_{1}=C_{2} \cdot C_{3}$, we have to deal with the following two subcases.
Subcase 2a. $\quad C_{3}=0$.
Then for each $p>r-1$

$$
\int_{\alpha}^{x_{i}} \cdots \int_{\alpha}^{t_{r-2}} \cdots \int_{\alpha}^{t_{p-1}} d w_{p}\left(t_{p}\right) \cdots d w_{r-1}\left(t_{r-1}\right) \cdots d w_{q}\left(t_{q}\right)=0
$$

and therefore $v_{p}\left(x_{i}\right)=0$. This implies $v_{p} \equiv 0$ on $\left[\alpha, x_{i}\right]$, because $v_{p}(\alpha)=0$, and v_{p} is increasing on $[\alpha, \infty) \cap J$.

Subcase 2b. $\quad \widetilde{C}_{2}=C_{2}$.
If $k=r$, it follows that $w_{r}\left(x_{i+1}\right)=w_{r}\left(x_{i}\right)$, and therefore $w_{r} \equiv$ const on $\left[x_{i}, x_{i+1}\right]$, in contradiction to assumption (B).

Now, let $k>r$. Then there exists $\zeta \in\left[x_{i}, x_{i+1}\right]$, such that

$$
\begin{aligned}
0 & =\int_{x_{i}}^{x_{i+1}} \cdots \int_{\alpha}^{t_{k-1}} d w_{k}\left(t_{k}\right) \cdots d w_{r}\left(t_{r}\right) \\
& =\left(w_{r}\left(x_{i+1}\right)-w_{r}\left(x_{i}\right)\right) \cdot \int_{\alpha}^{\zeta} \cdots \int_{\alpha}^{t_{k-1}} d w_{k}\left(t_{k}\right) \cdots d w_{r-1}\left(t_{r-1}\right) .
\end{aligned}
$$

This implies

$$
\int_{\alpha}^{x_{i}} \cdots \int_{\alpha}^{t_{k-1}} d w_{k}\left(t_{k}\right) \cdots d w_{r-1}\left(t_{r-1}\right)=0
$$

so $v_{p} \equiv 0$ on $\left[\alpha, x_{i}\right]$ for every $p \geqslant r$.
Summarizing the above considerations, we have in case $l>1$:
For all intervals $\left[x_{i}, x_{i+1}\right]$ and $\left[x_{i+1}, x_{i+2}\right], i \in\{0, \ldots, l-2\}$, with $j_{i}<j_{i+1}$ either
(a) $v_{p} \equiv 0$ on $\left[\alpha, x_{i+1}\right]$ for every $p \geqslant k$, and the sequence $\left(j_{s}\right)_{s=i+1}^{t-1}$ is strictly increasing, or
(b) $v_{p} \equiv 0$ on $\left[\alpha, x_{i}\right]$ for every $p \geqslant k$, the sequence $\left(j_{s}\right)_{s=i+1}^{l-1}$ is strictly increasing, and $C_{1}=C_{2} \cdot C_{3}$.

Now, consider the partition $\left\{x_{i+1}, \ldots, x_{i}\right\}$ of the subinterval $\left[x_{i+1}, \beta\right]$. For each interval $\left[x_{s}, x_{s+1}\right.$] with $s \geqslant 1$ we have

$$
\begin{aligned}
v_{k}(t)= & \int_{\alpha}^{x_{s}} \cdots \int_{\alpha}^{t_{k-1}} d w_{k}\left(t_{k}\right) \cdots d w_{j_{s}}\left(t_{j_{s}}\right) \cdot v_{j_{s}-1}(t) \\
= & \underbrace{\int_{\alpha}^{x_{i+1}} \cdots \int_{\alpha-1}^{t_{k-1}} d w_{k}\left(t_{k}\right) \cdots d w_{j_{i+1}}\left(t_{j_{i+1}}\right)}_{=: c_{i+1, k}} \\
& \cdot \underbrace{\prod_{v=i+2}^{s} \int_{\alpha}^{x_{v}} \cdots \int_{\alpha}^{t_{j_{v-1}}} d w_{j_{v-1}+1}\left(t_{j_{v-1}+1}\right) \cdots d w_{j_{v}}\left(t_{j_{v}}\right) \cdot v_{j_{s-1}}(t)}_{=: \gamma_{s}}
\end{aligned}
$$

for all $t \in\left[x_{s}, x_{s+1}\right]$; if $s=i+1$, then let $\gamma_{s}=1$.
Analogously we compute

$$
v_{p}(t)=\underbrace{\int_{\alpha}^{x_{i+1}} \cdots \int_{\alpha}^{t_{p-1}} d w_{p}\left(t_{p}\right) \cdots d w_{j_{i+1}}\left(t_{j_{i+1}}\right) \cdot \gamma_{s} \cdot v_{j_{s}-1}(t)}_{=: c_{i+1}, p}
$$

for all $p \geqslant k$ on $\left[x_{s}, x_{s+1}\right]$.

Further distinctions are needed:
Case I. $\quad C_{i+1, k}=0$.
Proceeding as in Case 1 one gets $C_{i+1, p}=0$ for every $p>k$. Therefore, $v_{p} \equiv 0$ on $\left[x_{i+1}, \beta\right]$ for every $p \geqslant k$.

Besides, $C_{i+1, k}=0$ implies

$$
\int_{x}^{t} \cdots \int_{x}^{t_{k-1}} d w_{k}\left(t_{k}\right) \cdots d w_{j_{i+1}}\left(t_{j_{i+1}}\right)=0
$$

for all $t \in\left[\alpha, x_{i+1}\right]$. So we have $v_{p} \equiv 0$ on $\left[\alpha, x_{i+1}\right]$ for every $p \geqslant k$.
Thus, $v_{p} \equiv 0$ on $[\alpha, \beta]$ for every $p \geqslant k$.
Case II. $\quad C_{i+1, k}>0$.
For each interval $\left[x_{s}, x_{s+1}\right]$ with $s \geqslant i+1$ we have

$$
\gamma_{s} \cdot v_{j_{s}-1}=\frac{v_{k}}{C_{i+1, k}}
$$

so one gets

$$
v_{p} \equiv \frac{C_{i+1, p}}{C_{i+1, k}} \cdot v_{k}
$$

on the set $\left[\alpha, x_{i}\right] \cup\left[x_{i+1}, \beta\right]$.
If $v_{p} \equiv 0$ on $\left[\alpha, x_{i+1}\right]$ for every $p \geqslant k$, obviously

$$
v_{p} \equiv \frac{C_{i+1, p}}{C_{i+1, k}} \cdot v_{k}
$$

on $[\alpha, \beta]$.
Now, let us assume $v_{p} \equiv 0$ on $\left[\alpha, x_{i}\right]$ and $C_{1}=C_{2} \cdot C_{3}$. Then, for all $t \in\left[x_{i}, x_{i+1}\right]$ and $p \geqslant k$ we have

$$
v_{p}(t)=\underbrace{\int_{\alpha}^{x_{i}} \cdots \int_{\alpha}^{t_{p-1}} d w_{p}\left(t_{p}\right) \cdots d w_{j_{i}}\left(t_{j_{i}}\right) \cdot v_{j_{i}-1}(t) .}_{=: c_{i, p}}
$$

$v_{k}\left(x_{i}\right)=0$ implies directly $C_{i, p}=0$, and therefore $v_{k} \equiv v_{p} \equiv 0$ on $\left[\alpha, x_{i+1}\right]$. If $v_{k}\left(x_{i}\right)>0$, we especially have $C_{i, k}>0$.

For all $t \in\left[x_{i}, x_{i+1}\right]$ follows

$$
v_{p}(t)=\frac{C_{i, p}}{C_{i, k}} \cdot v_{k}(t)
$$

and, in particular, for x_{i+1}

$$
\begin{aligned}
v_{p}\left(x_{i+1}\right) & =\frac{C_{i, p}}{C_{i, k}} \cdot v_{k}\left(x_{i+1}\right) \\
& =\frac{C_{i+1, p}}{C_{i+1, k}} \cdot v_{k}\left(x_{i+1}\right)
\end{aligned}
$$

Since $v_{k}\left(x_{i}\right)>0$, we have $v_{k}\left(x_{i+1}\right)>0$, thus

$$
\frac{C_{i, p}}{C_{i, k}}=\frac{C_{i+1, p}}{C_{i+1, k}} .
$$

So we finally get

$$
v_{p} \equiv \frac{C_{i+1, p}}{C_{i+1, k}} \cdot v_{k}
$$

on the interval $[\alpha, \beta]$.
Q.E.D.

This completes the proof of Theorem 1.
To prove Theorem 2 we need the following results:
Lemma 8. Let $c, d \in M$ and let $1, f_{1}, \ldots, f_{n} \in F(M)$ be a weak Markov system with Property (E). If $f_{1 \mid[c, d] \cap M} \equiv$ const, then $f_{\mid[c, d] \cap M} \equiv$ const for every $f \in U_{n}$.

Proof. For $n \leqslant 1$ the statement is trivial.
$n-1 \Rightarrow n$: By Condition (E1) there exists a weak M^{+}system 1 , $g_{1}, \ldots, g_{n} \in F(M)$ with $\operatorname{lin}\left\{1, \ldots, g_{j}\right\}=\operatorname{lin}\left\{1, \ldots, f_{j}\right\}$ for every $j \in\{1, \ldots, n\}$.

By the induction hypothesis every $g \in U_{n-1}$ is constant on $[c, d] \cap M$.
As U_{n} is a weak Tchebycheff space, there exists $\tilde{c}, \vec{d} \in M$ with $\tilde{c} \leqslant c<$ $d \leqslant \check{d}$, such that $1, f_{1}, \ldots, f_{n}$ are linearly independent on $[\tilde{c}, \infty) \cap M$ as well as on $(-\infty, \widetilde{d}] \cap M$.

Now let $1, u_{1}, \ldots, u_{n} \in F(M)$ with Property (E2) on the set [$\left.\tilde{c}, \infty\right) \cap M$ and let $1, v_{1}, \ldots, v_{n} \in F(M)$ with Property (E3) on $(-\infty, d] \cap M$.

Let $\operatorname{card}(M \cap[c, d]) \geqslant 2$. Thus, for all $\left(t_{1}, t_{2}\right) \in \Delta_{2}(M \cap[c, d])$

$$
\begin{aligned}
\left|\begin{array}{cc}
1 & 1 \\
(-1)^{n-1} v_{n}\left(t_{1}\right) & (-1)^{n-1} v_{n}\left(t_{2}\right)
\end{array}\right| & =(-1)^{n-1}\left(v_{n}\left(t_{2}\right)-v_{n}\left(t_{1}\right)\right) \\
& =(-1)^{n-1}\left(g_{n}\left(t_{2}\right)-g_{n}\left(t_{1}\right)\right) \\
& \geqslant 0
\end{aligned}
$$

holds, because of $1,(-1)^{-1} v_{n}$ is a weak M^{+}system on the set $(-\infty, \lambda] \cap M$, and $v_{n}=g_{n}+g$ with $g \in \operatorname{lin}\left\{1, g_{1}, \ldots, g_{n-1}\right\}$.

First let us assume that there exists a point $\tilde{t} \in M, \tilde{t}<c$ with $f_{1}(\tilde{t}) \neq f_{1}(c)$. Applying Condition (E3) we get

$$
\begin{aligned}
& (-1)^{n-2}\left|\begin{array}{ccc}
1 & 1 & 1 \\
v_{1}(\tilde{t}) & v_{1}\left(t_{1}\right) & v_{1}\left(t_{2}\right) \\
v_{n}(\tilde{t}) & v_{n}\left(t_{1}\right) & v_{n}\left(t_{2}\right)
\end{array}\right| \\
& \quad=(-1)^{n-2}\left|\begin{array}{ccc}
1 & 1 & 1 \\
v_{1}(\tilde{t})-v_{1}\left(t_{1}\right) & 0 & 0 \\
v_{n}(\tilde{t}) & v_{n}\left(t_{1}\right) & v_{n}\left(t_{2}\right)
\end{array}\right| \\
& \quad=(-1)^{n-2}\left(g_{1}\left(t_{1}\right)-g_{1}(\tilde{t})\right)\left(g_{n}\left(t_{2}\right)-g_{n}\left(t_{1}\right)\right) \\
& \geqslant 0 .
\end{aligned}
$$

So $g_{1}\left(t_{1}\right)-g_{1}(\tilde{t})>0$ implies $g_{n}\left(t_{1}\right)=g_{n}\left(t_{2}\right)$ for all $\left(t_{1}, t_{2}\right) \in \Delta_{2}([c, d] \cap M)$.
If $f_{1} \equiv$ const on $(-\infty, d] \cap M$, there exists a point $\tilde{t} \in M, \tilde{t}>d$ with $f_{1}(d) \neq f_{1}(\tilde{t})$.

Using Condition (E2) we have

$$
\left|\begin{array}{cc}
1 & 1 \\
u_{n}\left(t_{1}\right) & u_{n}\left(t_{2}\right)
\end{array}\right| \geqslant g_{n}\left(t_{2}\right)-g_{n}\left(t_{1}\right) \geqslant 0
$$

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
u_{1}\left(t_{1}\right) & u_{1}\left(t_{2}\right) & u_{1}(\tilde{t}) \\
u_{n}\left(t_{1}\right) & u_{n}\left(t_{2}\right) & u_{n}(\tilde{t})
\end{array}\right|=\left(g_{1}\left(t_{1}\right)-g_{1}(\tilde{t})\right)\left(g_{n}\left(t_{2}\right)-g_{n}\left(t_{1}\right)\right) \geqslant 0
$$

and $g_{1}\left(t_{1}\right)-g_{1}(\tilde{t})<0$. Thus, $g_{n}\left(t_{2}\right)=g_{n}\left(t_{1}\right)$ holds for all $\left(t_{1}, t_{2}\right) \in$ $\Delta_{2}([c, d] \cap M)$, and the statement readily follows.
Q.E.D.

Definition. Let $f, g \in F(M)$. Then g is called
(a) C-bounded on M, if g is bounded on $[a, b] \cap M$ for every $a, b \in M$;
(b) Lipschitz-bounded with respect to f, if for every $a, b \in M$ there exists $K>0$, such that

$$
|g(x)-g(y)| \leqslant K|f(x)-f(y)| \quad \text { for } \quad x, y \in[a, b] \cap M .
$$

A weak Markov system $1, f_{1}, \ldots, f_{n} \in F(M)$ is called Lipschitz-bounded with respect to f_{1} (C-bounded), if all functions f_{1}, \ldots, f_{n} are Lipschitzbounded with respect to f_{1} (C-bounded).

In [9] Zalik proved C-boundedness for weak Markov systems with the Properties (E) and (I).

Lemma 9. Every normalized weak Markov system $1, f_{1}, \ldots, f_{n} \in F(M)$ with Property (E) is C-bounded.

Proof. Obviously, it is sufficient to show C-boundedness for the system $1, g_{1}, \ldots, g_{n} \in F(M)$, given by Condition (E1).

For $n \leqslant 1$ the statement is trivial.
$n-1 \Rightarrow n$: Let us suppose there are $c, d \in M$ such that g_{n} is unbounded on the set $[c, d] \cap M$. Therefore, the function $g_{n} \in U_{n}$ possesses at least one pole $p \in[c, d] \cap \bar{M}$.

So there is a sequence $\left(t_{k}\right)_{k=0}^{\infty}$ in the set $[c, d] \cap M$ converging to p with $\lim _{k \rightarrow \infty}\left|g_{n}\left(t_{k}\right)\right|=\infty$. Without loss of generality let $t_{0}>t_{k}$ for every $k \geqslant 1$.

Moreover, there is a point $\tilde{c} \in(-\infty, c] \cap M$, such that $1, g_{1}, \ldots, g_{n}$ are linearly independent on the set $[\tilde{c}, \infty) \cap M$.

By the induction hypothesis we have $u_{n}=g_{n}+g$ with $g \in U_{n-1}$, which is bounded on $[c, d] \cap M$. Condition (E2) implies that the sets $\left\{u_{n}\right\}$ and $\left\{1, u_{n}\right\}$ form weak M^{+}systems on [$\left.\tilde{c}, \infty\right) \cap M$. Thus, for each $k \geqslant 1$ there follows

$$
u_{n}\left(t_{k}\right)=g_{n}\left(t_{k}\right)+g\left(t_{k}\right) \geqslant 0
$$

and

$$
u_{n}\left(t_{0}\right)-u_{n}\left(t_{k}\right)=-g_{n}\left(t_{k}\right)+\left(u_{n}\left(t_{0}\right)-g\left(t_{k}\right)\right) \geqslant 0
$$

Therefore, the unboundedness of the sequence $\left(g_{n}\left(t_{k}\right)\right)_{k=0}^{\infty}$ leads to a contradiction.
Q.E.D.

Lemma 10. Every normalized weak Markov system $1, f_{1}, \ldots, f_{n} \in F(M)$ with Property (E) is Lipschitz-bounded with respect to f_{1}.

Proof. We are going to prove the statement for the weak M^{+}system 1, $g_{1}, \ldots, g_{n} \in F(M)$, given by Condition (E1).

If $n \leqslant 1$, the statement is obvious.
$n-1 \Rightarrow n:$ Let $(c, d) \in \Delta_{2}(M)$ be fixed. There are $\tilde{c}, \mathfrak{d} \in M$ with $\tilde{c} \leqslant c<$ $d \leqslant d$ and

$$
\operatorname{dim} U_{n \mid[\tilde{c}, \infty) \cap M}=\operatorname{dim} U_{n \mid(-\infty, d] \cap M}=n+1 .
$$

Moreover, let us assume that $1, v_{1}, \ldots, v_{n} \in F(M)$ fulfill Condition (E3) on $(-\infty, \partial] \cap M$.

Case 1. There are $\left(\tilde{t}_{0}, \tilde{t}_{1}, \tilde{t}_{2}\right) \in A_{3}([c, d] \cap M)$ with $g_{1}\left(\tilde{t}_{0}\right)<$ $g_{1}\left(\tilde{t}_{1}\right)<g_{1}\left(\tilde{t}_{2}\right)$. By Condition (E3) the sets

$$
\left\{1, v_{1}\right\},\left\{1,(-1)^{n-1} v_{n}\right\}, \quad\left\{-v_{1},(-1)^{n-1} v_{n}\right\}, \text { and }\left\{1, v_{1},(-1)^{n-2} v_{n}\right\}
$$

form weak M^{+}systems on $(-\infty, \tilde{d}] \cap M$. Therefore v_{1} and $(-1)^{n-1} v_{n}$ are increasing on $(-\infty, \overparen{d}] \cap M$, and

$$
(-1)^{n}\left|\begin{array}{ll}
v_{1}(x) & v_{1}(y) \\
v_{n}(x) & v_{n}(y)
\end{array}\right|=(-1)^{n}\left(v_{n}(y) v_{1}(x)-v_{n}(x) v_{1}(y)\right) \geqslant 0
$$

for all $(x, y) \in \Delta_{2}(M \cap(-\infty, \tilde{d}])$.
Now let $\left(t_{0}, t_{1}, t_{2}\right) \in \Delta_{3}(M \cap(-\infty, \tilde{d}])$ be fixed, such that $g_{1}\left(t_{0}\right)<$ $g_{1}\left(t_{1}\right)<g_{1}\left(t_{2}\right)$. Then

$$
\begin{aligned}
&(-1)^{n-2}\left|\begin{array}{ccc}
1 & 1 & 1 \\
v_{1}\left(t_{0}\right) & v_{1}\left(t_{1}\right) & v_{1}\left(t_{2}\right) \\
v_{n}\left(t_{0}\right) & v_{n}\left(t_{1}\right) & v_{n}\left(t_{2}\right)
\end{array}\right| \\
&=(-1)^{n-2}\left[\left(v_{n}\left(t_{1}\right) v_{1}\left(t_{0}\right)-v_{n}\left(t_{0}\right) v_{1}\left(t_{1}\right)\right)\right. \\
&\left.-v_{1}\left(t_{2}\right)\left(v_{n}\left(t_{1}\right)-v_{n}\left(t_{0}\right)\right)+v_{n}\left(t_{2}\right)\left(v_{1}\left(t_{1}\right)-v_{1}\left(t_{0}\right)\right)\right] \\
&=(-1)^{n-2}\left[\left(v_{n}\left(t_{1}\right)-v_{n}\left(t_{0}\right)\right)\left(v_{1}\left(t_{0}\right)-v_{1}\left(t_{2}\right)\right)\right. \\
&\left.+\left(v_{n}\left(t_{2}\right)-v_{n}\left(t_{0}\right)\right)\left(v_{1}\left(t_{1}\right)-v_{1}\left(t_{0}\right)\right)\right] \\
&= D_{I} \geqslant 0 .
\end{aligned}
$$

By a simple calculation one shows

$$
\begin{aligned}
& \frac{D_{I}}{\left(v_{1}\left(t_{2}\right)-v_{1}\left(t_{0}\right)\right)\left(v_{1}\left(t_{1}\right)-v_{1}\left(t_{0}\right)\right)} \\
& \quad=(-1)^{n-2}\left(\frac{v_{n}\left(t_{2}\right)-v_{n}\left(t_{0}\right)}{v_{1}\left(t_{2}\right)-v_{1}\left(t_{0}\right)}-\frac{v_{n}\left(t_{1}\right)-v_{n}\left(t_{0}\right)}{v_{1}\left(t_{1}\right)-v_{1}\left(t_{0}\right)}\right) \geqslant 0 .
\end{aligned}
$$

Let $t_{0} \in(-\infty, d) \cap M$ be fixed. Then

$$
\varphi_{t_{0}}(x):=(-1)^{n-2} \frac{v_{n}(x)-v_{n}\left(t_{0}\right)}{g_{1}(x)-g_{1}\left(t_{0}\right)}
$$

is well defined on the set $M_{t_{0}}:=\left\{t \in\left(t_{0}, \infty\right) \cap M \mid g_{1}\left(t_{0}\right)<g_{1}(t)\right\}$.
As the functions v_{1} and $(-1)^{n-1} v_{n}$ are increasing on $(-\infty, \tilde{d}] \cap M, \varphi_{t_{0}}$ is nonpositive, increasing, and bounded from above.

A similar computation of the determinant D_{I} gives

$$
\begin{aligned}
& \frac{D_{I}}{\left(v_{1}\left(t_{2}\right)-v_{1}\left(t_{0}\right)\right)\left(v_{1}\left(t_{2}\right)-v_{1}\left(t_{0}\right)\right)} \\
& \quad=(-1)^{n-2}\left(\frac{v_{n}\left(t_{1}\right)-v_{n}\left(t_{2}\right)}{v_{1}\left(t_{1}\right)-v_{1}\left(t_{2}\right)}-\frac{v_{n}\left(t_{0}\right)-v_{n}\left(t_{2}\right)}{v_{1}\left(t_{0}\right)-v_{1}\left(t_{2}\right)}\right) \geqslant 0 .
\end{aligned}
$$

For fixed $t_{2} \in(-\infty, d] \cap M$ the function

$$
\varphi_{t_{2}}(x)=(-1)^{n-2} \frac{v_{n}(x)-v_{n}\left(t_{2}\right)}{g_{1}(x)-g_{1}\left(t_{2}\right)}
$$

is increasing, nonpositive on $M_{t_{2}}:=\left\{t \in\left(-\infty, t_{2}\right) \cap M \mid g_{1}(t)<g_{1}\left(t_{2}\right)\right\}$, and therefore bounded from above.

Applying the induction hypothesis to $g_{n}=v_{n}+g, g \in U_{n-1}$, the Lipschitz-boundedness of g_{n} directly follows from the fact that $\varphi_{t_{1}}$ and $\varphi_{t_{2}}$ are bounded from above.

Case 2. If $g_{1}([c, d] \cap M)$ consists of no more than two points, the proof of the statement follows by Lemma 8.
Q.E.D.

Throughout the following considerations on relative derivatives we can assume:

1. $I=(a, b)$ an open and bounded interval
2. $1, f_{1}, \ldots, f_{n} \in C(I)$ a normalized weak Markov system.

These assumptions mean no loss of generality, because in [8] Zalik proved the following embedding property of weak Markov systems:

Every C-bounded normalized weak M^{+}system $1, f_{1}, \ldots, f_{n} \in F(M)$ is embeddable in a normalized weak M^{+}system $1, g_{1}, \ldots, g_{n} \in C(I)$, where I is an open-bounded interval, i.e., there is $c \in M$ and a strictly increasing function $h: M \rightarrow I$ with $h(c)=c$, such that $g_{j}(h(t))=f_{j}(t)$ for every $j \in\{0, \ldots, n\}$ and every $t \in M$. Examining the proof one sees that if $1, f_{1}, \ldots, f_{n} \in F(M)$ has Property (E) this also holds for $1, g_{1}, \ldots, g_{n} \in C(I)$ (see Theorem 3 in [9]).

Examining the proof one sees that if $1, f_{1}, \ldots, f_{n} \in F(M)$ has Property (E) this also holds for $1, g_{1}, \ldots, g_{n} \in C(I)$ (see Theorem 3 in [9]).

Definition. Let $f, g \in C(I), f$ monotone and nonconstant, and for $\alpha \in I$ let

$$
\begin{aligned}
R_{\alpha}:=\{x \in(\alpha, b) \mid f(\alpha) \neq f(x)\}, & L_{\alpha}:=\{x \in(a, \alpha) \mid f(x) \neq f(\alpha)\} \\
r_{\alpha}:=\inf R_{\alpha}, & l_{\alpha}:=\sup L_{\alpha}
\end{aligned}
$$

Moreover, let

$$
I_{R}:=\left\{x \in I \mid R_{x} \neq \varnothing\right\}, \quad I_{L}:=\left\{x \in I \mid L_{x} \neq \varnothing\right\} .
$$

Then the right and left relative derivatives of g with respect to f are defined by

$$
D_{+} g(\alpha)=\lim _{t \rightarrow r_{\alpha}+} \frac{g(t)-g(\alpha)}{f(t)-f(\alpha)}, \quad \alpha \in I_{R}
$$

and

$$
D_{-} g(\alpha)=\lim _{t \rightarrow t_{-}-} \frac{g(t)-g(\alpha)}{f(t)-f(\alpha)}, \quad \alpha \in I_{L} .
$$

The concept of relative differentiation in normalized weak Markov spaces was introduced by Zielke in [11].

To prove Theorem 2 we need the following result, which may be of some independent interest:

Theorem 3. If $1, f_{1}, \ldots, f_{n} \in C(I)$ is a weak Markov system with Property (E), then

$$
D_{+} f_{1}, \ldots, D_{+} f_{n} \in F\left(I_{R}\right)
$$

and

$$
D_{-} f_{1}, \ldots, D_{-} f_{n} \in F\left(I_{L}\right)
$$

are normalized weak Markov systems with Property (E).
Lemma 11. Let $1, f_{1}, \ldots, f_{n} \in C(I)$ be Lipschitz-bounded with respect to f_{1}. Then for every $g \in U_{n}$
(a) $D_{+} g(t) \in \mathbb{R}$ for all $t \in I_{R}$;
(b) $D_{-} g(t) \in \mathbb{R}$ for all $t \in I_{L}$.

The proof of Lemma 11 is completely analogous to the last part of the proof of Lemma 11.3(a) in [10], and will therefore be omitted.

Lemma 12. Let $g \in U_{n}$ be Lipschitz-bounded with respect to f_{1}. Then
(a) $D_{+} g(t)=0$ for all $t \in(c, d) \subset I_{R}$ implies $g \equiv$ const on (c, d);
(b) $D_{-} g(t)=0$ for all $t \in(c, d) \subset I_{L}$ implies $g \equiv$ const on (c, d).

Proof. Without loss of generality we may assume that f_{1} is increasing. At first, let g be increasing, too.

Fix $\varepsilon>0$ and let $x_{0} \in(c, d)$. Because of $D_{+} g \equiv 0$ on (c, d) we have for $x>r_{x_{0}}$

$$
0<\frac{g(x)-g\left(x_{0}\right)}{f(x)-f\left(x_{0}\right)}<\varepsilon
$$

if the distance $\left|x-r_{x_{0}}\right|$ is sufficiently small.

The above estimate implies

$$
\varepsilon f\left(x_{0}\right)-g\left(x_{0}\right)<\varepsilon f(x)-g(x) .
$$

By Riesz's lemma (see, e.g., [3, p. 319]), for each closed interval $[\gamma, \delta] \subset(c, d)$ there follows

$$
\varepsilon f(\gamma)-g(\gamma) \leqslant \varepsilon f(\delta)-g(\delta)
$$

and therefore

$$
g(\delta)-g(\gamma) \leqslant \varepsilon(f(\delta)-f(\gamma))
$$

Since $\varepsilon>0$ was arbitrary, $g([\gamma, \delta])=[g(\gamma), g(\delta)]$ is a degenerated interval, thus $g \equiv$ const on (c, d).

Now, let $g \in U_{n}$ be arbitrary. By Lemma 3 there exists a natural number $k \leqslant n+1$, and points p_{0}, \ldots, p_{k} with $c=p_{0}<\cdots<p_{k}=d$, such that g is monotone on each interval $\left(p_{j}, p_{j+1}\right), j \in\{0, \ldots, k-1\}$.

Thus, $g \equiv$ const on every interval $\left(p_{j}, p_{j+1}\right)$. Since $D_{+} g\left(p_{j}\right)=0$, $j \in\{1, \ldots, k-1\}$, we get $g \equiv$ const on (c, d).

The proof of part (b) is completely analogous to the proof of part (a) and will be omitted.
Q.E.D.

Proof of Theorem 3. One easily sees from Lemmas 10 and 11 that $D_{+}: U_{n} \rightarrow F\left(I_{R}\right)$ is a well-defined linear operator.

Clearly, kern D_{+}contains U_{0}, so $D_{+} U_{n}$ is a subspace with $\operatorname{dim} D_{+} U_{n} \leqslant n$. Applying Lemma 12 it follows $U_{0}=\operatorname{kern} D_{+}$, and therefore $\operatorname{dim} D_{+} U_{n}=\operatorname{dim} U_{n}-\operatorname{dim}\left(\operatorname{kern} D_{+}\right)=n$. Proceeding as in [10, Lemma 11.3(b)] we conclude that $D_{+} f_{1}, \ldots, D_{+} f_{n} \in F\left(I_{R}\right)$ is a normalized weak Markov system.

By Condition (E1) there exists a normalized weak M^{+}system 1, $g_{1}, \ldots, g_{n} \in C(I)$, such that for each $j \in\{1, \ldots, n\}$

$$
\operatorname{lin}\left\{1, \ldots, f_{j}\right\}=\operatorname{lin}\left\{1, \ldots, g_{j}\right\} .
$$

We show that $D_{+} g_{1}, \ldots, D_{+} g_{n} \in F\left(I_{R}\right)$ is a normalized weak M^{+}system, if f_{1} is increasing; if f_{1} is decreasing, then $-D_{+} g_{1}, \ldots,-D_{+} g_{n} \in F\left(I_{R}\right)$ is a normalized weak M^{+}system:

Let f_{1} be increasing, $k \in\{1, \ldots, n\},\left(t_{1}, \ldots, t_{k}\right) \in \Delta_{k}\left(I_{R}\right)$ and $\varphi \in D_{+} U_{k}$ with

$$
\varphi=\alpha D_{+} g_{k}+\tilde{\varphi}, \quad \alpha>0, \tilde{\varphi} \in D_{+} U_{k-1}
$$

Suppose that

$$
(-1)^{k-i} \varphi\left(t_{i}\right)<0 \quad \text { for } \quad i=1, \ldots, k
$$

Then there are functions $g \in U_{k}$ and $\tilde{g} \in U_{k-1}$ such that $\varphi=D_{+} g$, $g=\alpha g_{k}+\tilde{g}$, and $\tilde{\varphi}=D_{+} \tilde{g}$.

Since $(-1)^{k-i} \varphi\left(t_{i}\right)<0$ for each $i \in\{1, \ldots, k\}$, there exists $\left(u_{1}, \ldots, u_{k}\right) \in$ $\Delta_{k}(I)$ with $u_{k} \in\left(t_{k}, b\right)$ and $u_{i} \in\left(t_{i}, t_{i+1}\right)$ for any $i \in\{1, \ldots, k-1\}$, such that

$$
(-1)^{k-i} \frac{g\left(u_{i}\right)-g\left(t_{i}\right)}{f_{1}\left(u_{i}\right)-f_{1}\left(t_{i}\right)}<0 \quad i=1, \ldots, k .
$$

As f_{1} is increasing we have

$$
(-1)^{k-i}\left(g\left(u_{i}\right)-g\left(t_{i}\right)\right)<0 \quad i=1, \ldots, k
$$

Consequently $\left(t_{1}, u_{1}, \ldots, t_{k}, u_{k}\right) \in \Delta_{2 k}(I)$ contains a negatively oriented oscillation of $g=\alpha g_{k}+\tilde{g} \in U_{k}$, in contradiction to Lemma 4.

If f_{1} is decreasing, the proof is completely analogous.
Conditions (E2) and (E3) can be shown by analogous arguments.

> Q.E.D.

Note, that the oscillation Lemma 4 for normalized weak M^{+}systems was essential to prove Property (E) for the relative derivatives.

Proof of Theorem 2. Let $1, f_{1}, \ldots, f_{n}$ be a weak Markov system with Property (E).

For $n \leqslant 1$ the statement is trivial.
$n-1 \Rightarrow n$: By the embedding property of weak Markov systems 1 , f_{1}, \ldots, f_{n} is embeddable in a weak Markov system $1, z_{1}, \ldots, z_{n} \in C(I)$, $I:=(a, b)$ open and bounded, i.e., there is $c \in M$, and a strictly increasing function $h_{1}: M \rightarrow I$ with $h_{1}(c)=c$, such that $f_{j}(x)=z_{j}\left(h_{1}(x)\right)$ for every $j \in\{1, \ldots, n\}$ and for every $x \in M ; 1, z_{1}, \ldots, z_{n}$ has Property (E).

From Theorem 3 follows that the left and right relative derivatives of 1 , z_{1}, \ldots, z_{n} are nomalized weak Markov systems with Property (E).

Now let I_{R} and I_{L} be defined as above. If there is $\alpha \in I$, such that $z_{1} \equiv z_{1}(\alpha)$ on $[\alpha, b)$, let us define

$$
b_{1}:=\inf \left\{x \in I \mid z_{1}(x)=z_{1}(\alpha)\right\}
$$

and $b_{1}:=b$, if there is no such α.
If $b_{1}<b$, we have $\sup I_{R}=b_{1} \in I_{R}$.
By Lemma $9,1=D_{+} z_{1}, \ldots, D_{+} z_{n} \in F\left(I_{R}\right)$ is C-bounded. Thus there is a normalized weak Markov system $1, \varphi_{1}, \ldots, \varphi_{n} \in F(I)$ such that for each $j \in\{2, \ldots, n\}$

$$
\left.\varphi_{j}\right|_{I_{R}} \equiv D_{+} z_{j}
$$

and, if $b_{1}<b$

$$
\varphi(x)=D_{+} z_{j}\left(b_{1}\right), \quad x \in\left[b_{1}, b\right) .
$$

Obviously, $1=\varphi_{1}, \ldots, \varphi_{n} \in F(I)$ has Property (E), and, using the induction hypothesis, it is representable. So there is $\tilde{c} \in I$, a strictly increasing function $h_{2}: I \rightarrow \mathbb{R}$ with $h_{2}(\tilde{c})=\tilde{c}$, and increasing functions $w_{2}, \ldots, w_{n} \in C\left(K\left(h_{2}(I)\right)\right)$ with $w_{2}(\tilde{c})=\cdots=w_{n}(\tilde{c})=0$, such that for every $j \in\{2, \ldots, n\}$ and for every $x \in I$

$$
\varphi_{j}(x)=\int_{\tilde{c}}^{h(x)} \cdots \int_{\tilde{c}}^{t_{j}-1} d w_{j}\left(t_{j}\right) \cdots d w_{2}\left(t_{2}\right)
$$

Now, let us define ϕ_{j} on the convex hull of $h_{2}(I)$ by

$$
\phi_{j}(t)=\int_{\tilde{c}}^{t} \cdots \int_{\tilde{c}}^{t_{j-1}} d w_{j}\left(t_{j}\right) \cdots d w_{2}\left(t_{2}\right), \quad j=2, \ldots, n
$$

Without loss of generality we may choose $\tilde{c}=c$.
Let w_{1} be defined by $w_{1}(x)=z_{1}\left(h_{2}^{-1}(x)\right), x \in h_{2}(I)$, and on the convex hull of $h_{2}(I)$ by linear interpolation in the same way as in the proof of Theorem 3 in [11].

Setting $h=h_{2} \circ h_{1}$, then for $x \in M$ and $j \in\{1, \ldots, n\}$ we get

$$
g_{j}(x):=f_{j}(x)-f_{j}(c)=\int_{c}^{h(x)} \phi_{j}(s) d w_{1}(s)
$$

an integral representation of $1, f_{1}, \ldots, f_{n} \in F(M)$.
Now, let $1, f_{1}, \ldots, f_{n} \in F(M)$ be representable. Then there is a basis 1 , $g_{1}, \ldots, g_{n} \in F(M)$ of U_{n} defined by (I). Obviously, it is sufficient to show Property (E) for the corresponding system $1, v_{1}, \ldots, v_{n} \in C(J)$ defined by (I1).

By Lemma $5,1, v_{1}, \ldots, v_{n} \in C(J)$ is a weak Markov system.
Proceeding by induction over n, we will prove
(1) $1, v_{1}, \ldots, v_{n} \in C(J)$ is a normalized weak M^{+}system.

Proof of (1). For $n=0$ the statement is trivial.
$n-1 \Rightarrow n$: Let $v \in \operatorname{lin}\left\{1, \ldots, v_{n}\right\}$, say

$$
v=\sum_{i=0}^{n} \alpha_{i} v_{i}, \quad \text { with } \alpha_{n}>0, \alpha_{i} \in \mathbb{R} \quad \text { for } \quad i=0, \ldots, n-1
$$

and let us suppose that v has a negatively oriented alternation of length $n+1$ in $\left(t_{0}, \ldots, t_{n}\right) \in A_{n+1}(J)$, i.e.,

$$
(-1)^{n-j} v\left(t_{j}\right)<0, \quad j=0, \ldots, n
$$

Then, for every $j \in\{1, \ldots, n\}$;

$$
0>(-1)^{n-j}\left(v\left(t_{j}\right)-v\left(t_{j-1}\right)\right)=(-1)^{n-j}\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\left(t_{j}\right)-\sum_{i=1}^{n} \alpha_{i} v_{i}\left(t_{j-1}\right)\right)
$$

Clearly,

$$
\left(v-\alpha_{0}\right)(t)=\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\right)(t)=\int_{c}^{t} u(s) d w_{1}(s)
$$

with

$$
u=\alpha_{1}+\sum_{i=2}^{n} \alpha_{i} u_{i},
$$

where u_{2}, \ldots, u_{n} are defined by (I2); note that, by the induction hypothesis, $1, u_{2}, \ldots, u_{n}$ is a weak M^{+}system. Therefore, for every $j \in\{1, \ldots, n\}$, there exists $\zeta_{j} \in\left[t_{j-1}, t_{j}\right]$, such that

$$
0>(-1)^{n-j} \int_{t_{j-1}}^{t_{j}} u(s) d w_{1}(s)=(-1)^{n-j} u\left(\zeta_{j}\right) \underbrace{\left(w_{1}\left(t_{j}\right)-w_{1}\left(t_{j-1}\right)\right)}_{\geqslant 0} .
$$

But then, u has in $\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \Delta_{n}(J)$ a negatively oriented alternation of length n, in contradiction to Lemma 2.
It is easy to see that it is sufficient to prove Condition (E2) on $[c, \infty) \cap J$ and Condition (E3) on $(-\infty, c] \cap J$.
(2) If $1, v_{1}, \ldots, v_{n}$ is linearly independent on $[c, \infty) \cap J$, and $(k(l))_{l=0}^{m}$ and arbitrarily fixed subsequence of $\{0, \ldots, n\}$, then $v_{k(0)}, \ldots, v_{k(m)}$ is a weak M^{+}system on $[c, \infty) \cap J$.

Proof of (2). We distinguish two subcases.
Case 1. $k(0)=0$.
For $m=0$ the statement is obvious.
$m-1 \Rightarrow m$: Then, for all $t \in[c, \infty) \cap J$,

$$
v_{k(1)}(t)=\int_{c}^{t} d v_{k(1)}\left(t_{k(1)}\right)
$$

and, for all $i \in\{2, \ldots, m\}$,

$$
v_{k(i)}(t)=\int_{c}^{t} \int_{c}^{t_{k(1)}} \cdots \int_{c}^{t_{k(i)-1}} d w_{k(i)}\left(t_{k(i)}\right) \cdots d w_{k(1)+1}\left(t_{k(1)+1}\right) d v_{k(1)}\left(t_{k(1)}\right) .
$$

On the set $[c, \infty) \cap J, v_{k(1)}$ is increasing and nonnegative. Now, proceeding as in the proof of Lemma 13.2 in [10], and following the arguments used in (1) one gets: $1, v_{k(1)}, \ldots, v_{k(m)}$ is a weak M^{+}system on $[c, \infty) \cap J$.

If $k(0)>0$, these arguments are not applicable. But in that case we have $v(c)=0$ for every $v \in \operatorname{lin}\left\{v_{k(0)}, \ldots, v_{k(m)}\right\}$.

Case 2. $k(0)>0$.
If $m=0$, then the statement follows by the fact that $v_{k(0)}$ is increasing on $[c, \infty] \cap J$.
$m-1 \Rightarrow m$: Let us suppose that there are $v \in \operatorname{lin}\left\{v_{k(0)}, \ldots, v_{k(m)}\right\}$ and $\left(t_{0}, \ldots, t_{m+1}\right) \in \Delta_{m+2}([c, \infty) \cap J)$, such that

$$
(-1)^{m+1-j} v\left(t_{j}\right)<0, \quad j=0, \ldots, m+1
$$

$v(c)=0$ implies $c<t_{0}$. Setting $t_{-1}:=c$, it follows that

$$
(-1)^{m+1-j} \int_{t_{j-1}}^{t_{j}} \tilde{v}(s) d v_{k(0)}(s)<0, \quad j=0, \ldots, m+1
$$

with $\tilde{v} \in \operatorname{lin}\left\{\tilde{v}_{k(0)}, \ldots, \tilde{v}_{k(m)}\right\}$, where

$$
\begin{aligned}
& \tilde{v}_{k(0)}(t)=1 \\
& \tilde{v}_{k(i)}(t)=\int_{c}^{t} \cdots \int_{c}^{\eta_{k(i)-1}} d w_{k(i)}\left(t_{k(i)}\right) \cdots d w_{k(0)+1}\left(t_{k(0)+1}\right)
\end{aligned}
$$

for $i \in\{1, \ldots, m\}$.
But then, proceeding completely analogously to the proof of [10, Lemma 13.2] \tilde{v} would have a strong alternation of length $m+2$ in $[c, \infty) \cap J$, a contradiction.
Moreover, using the fact that $v(c)=0$ for every $v \in \operatorname{lin}\left\{v_{k(0)}, \ldots, v_{k(m)}\right\}$, and, following the arguments of (1) one gets: $1, \tilde{v}_{k(1)}, \ldots, \tilde{v}_{k(m)}$ is a weak M^{+} system on the set $[c, \infty) \cap J$.

The proof of Condition (E3) is completely analogous to the proof of Condition (E2).
Q.E.D.

References

1. S. Karlin and W. J. Studden, "Tchebycheff Systems: With Applications in Analysis and Statistics," Interscience, New York, 1966.
2. Th. Kilgore and R. A. Zalik, Splicing of Markov and weak Markov systems, J. Approx. Theory 59 (1989), 2-11.
3. A. N. Kolmogorov and S. V. Fomin, "Introductory Real Analysis," Dover, New York, 1976.
4. M. G. Krein and A. A. Nudel'man, "The Markov Moment Problem and Extremal Problems," Translations of Mathematical Monographs, Vol. 50, Amer. Math. Soc., Providence, RI, 1977.
5. M. A. Rutman, Integral representation of functions forming a Markov series, Soviet Math. Dokl. 164 (1965), 1340-1343.
6. F. SCHWENKER, "Integraldarstellung schwacher Markov-Systeme," dissertation, University of Osnabrück, 1988.
7. R. A. Zalik, Integral representation of Tchebycheff systems, Pacific J. Math. 68 (1977), 553-568.
8. R. A. Zalik, Embedding of weak Markov systems, J. Aprrox. Theory 41 (1984), 253-256; Erratum, J. Approx. Theory 43 (1985), 396.
9. R. A. Zalik, Integral representation and embedding of weak Markov systems, J. Approx. Theory 58 (1989), 1-11.
10. R. Zielke, "Discontinuous Cebyšev systems," Lecture Notes in Mathematics, No. 707, Springer-Verlag, New York, 1979.
11. R. Zielke, Relative differentiability and integral representation of a class of weak Markov systems, J. Approx. Theory 44 (1985), 30-42.
12. R. Zielke and F. Schwenker, An elementary proof of the oscillation lemma for weak Markov systems, J. Approx. Theory 59 (1989), 73-75.
13. D. Zwick, Degeneracy in WT-spaces, J. Approx. Theory 41 (1984), 100-113.
14. D. Zwick, Characterization of $W T$-spaces whose derivatives form a $W T$-Space, J. Approx. Theory 38 (1983), 188-191.

[^0]: * This paper is part of the author's dissertation [6] at the University of Osnabrück, Germany, September 1988.

